

IPC 9521 | SUBMITTAL

File No: 90.58IN

Date: DEC. 15, 2014

Supersedes: NEW

Date: NEW

Job:		Represer	Representative:				
		Ordered	by: Date: _	_ Date:			
Engineer:		Submitte	ed by: Date: _	Date:			
Contractor:		Approve	d by: Date: _	Date:			
CONFIGURATION SYSTEM		COOLING TOWERS** QUANTITY	PRIMARY PUMP SPEED CONTROL	FOR ZONE(S)			
	□1 □2	□1 □2 □3 □4 □5	☐ Sensorless	1			
Quantity of water	□3	□2 □3 □4 □5	☐ Local Plant dP sensor				
cooled chillers	□ 4	□3 □4 □5	☐ Zone differential pressure sensor(s) ☐ Zone return temperature sensor(s)	1 to 5			
	□ 5	□4 □5	☐ Zone return temperature sensor(s)				
Capacity per chiller*		Tons					
Number of zones		(Specify 1 to 5)					

 $^{^{\}star\star}$ Only headered cooling towers are allowed. 1 speed signal/VFD is considered per tower

SYSTEM LAYOUT	CONFIGURATION		OPERATION	QUANTITY OF CHW PRIMARY PUMPS		
Primary снw pumps	□ Single	□ Headered	☐ Parallel	☐ Duty pumps = number of chillers	(1 to 5) Duty + 0 Standby	
			☐ Standby	☐ Duty pumps = number of chillers* + 1 Standby pump	(1 to 4) Duty + 1 Standby	
		□ Dedicated	☐ Parallel	☐ Duty pumps = number of chillers	(1 to 5) Duty + 0 Standby	
			☐ Standby	☐ Duty pumps = number of chillers + Standby pumps = number of chillers	(1 to 5) Duty + (1 to 5) Standby**	
	□ DualArm □ Twin	☐ Dedicated	☐ Parallel	☐ Duty pumps = number of chillers	(1 to 5)***	

^{*} Up to 4 chillers systems

 $^{^{\}star}$ All chillers, pumps on each set & cooling towers have to be of identical capacity

^{**} Equal number of duty and standby pumps

^{*** 1} DualArm = 2 rotating assembly (considered Duty/Duty)

¹ Twin = 2 rotating assembly (considered Duty/Standby)

SYSTEM LAYOUT	CONFIGURATION		OPERATION	QUANTITY OF CHW PRIMARY PUMPS		
Condenser cw pumps □ Single		☐ Headered	☐ Parallel	☐ Duty pumps = number of chillers	(1 to 5) Duty + 0 Standby	
			☐ Standby	☐ Duty pumps = number of chillers* + 1 Standby pump	(1 to 4) Duty + 1 Standby	
	☐ Single	□ Dedicated	☐ Parallel	☐ Duty pumps = number of chillers	(1 to 5) Duty + 0 Standby	
			☐ Standby	☐ Duty pumps = number of chillers + Standby pumps = number of chillers	(1 to 5) Duty + (1 to 5) Standby**	
	□ DualArm □ Twin	☐ Dedicated	☐ Parallel	☐ Duty pumps = number of chillers	(1 to 5) Duty + 0 Standby	

^{*} Up to 4 chillers systems

STANDARD FUNCTIONALITY AND CONSTRUCTION

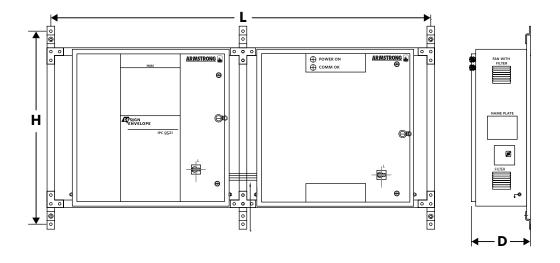
The Armstrong IPC 9521 is a pre-programmed control system, designed for the automation of a water cooled variable primary chiller plant. It includes:

- 2 panels mounted on a wall rack
- The master panel has a large-sized (10.4") touch-screen operator interface (not to be directly exposed to sunlight)
- On-screen menu driven operator interface manual or automatic system control (H-O-A selection)
- Multi-color schematic active display of mechanical room hydraulic circuit indicating operating status
- Remote or local start/stop mode of operation
- Three field and two factory levels password security
- Secure front cabinet door with lock and key
- Alarm and event logging of 2000 events
- Data trending available on a csv file
- Internal circuit breaker protection
- Automatic or manual pump alternation
- Alarms: ① controller communication alarm,
 ② sensor alarm, ③ general system alarm, ④ Individual equipment (chiller, pumps, tower fans, valves, auxiliary equipment) alarm
- Standard Modbus RTU communication between IPC controller and VFD's (pumps and towers)
- Logic outputs for chiller 2-way automatic ON/OFF isolation valves
- Logic output for chiller 2-way automatic modulating bypass valve
- Digital inputs for pump differential pressure switches on all variable speed primary pumps

- Output for remote alarm/horn signal
- Input for silencing of remote alarm/horn
- Automatic sequencing of chillers
- Sequencing, isolation valve, and modulating control for chillers in a variable primary flow application
- Pump speed, cooling valves and bypass valve PID control loop, adjustable
- Parallel SensorlessTM primary pumps control mode with best efficiency point staging.
- Cooling valves control mode (ASHRAE 90.1)
- Separate operating status display of primary and secondary pump status, pump speed(s) and drive status
- Separate operating status display of chiller status, demand limit, power, temperatures
- Separate operating status display of tower fan, tower fan speed(s) and drive status
- Separate operating status display of isolation and bypass valves
- Separate input screens for; set points, differential pressure sensors, flow and kW monitors
- Separate status display screens for; pump status, zone status, system status, plant status
- Power supply: 100V-240V AC/1 phase/50-60 Hz
- Ambient air Temperature for operation range: (o to 45°c)
- Ambient air temperature for storage range : (o to 60°c)
- Relative humidity: (10...85 %) Non Condensing
- Operating altitude 2000 m

2

^{**} Equal number of duty and standby pumps


OPTIONAL FEATURES AND DIMENSIONS

CHILLER COMMUNICATION		DIMENSIONS AND WEIGHTS					
		LENGTH	HEIGHT	DEPTH	WEIGHT	ENCLOSURE	
Interface	☐ Modbus RTU☐ BACnet™ MS/TP☐ BACnet™ IP	2100 (82.70)	1100 (43.30)	321 (12.60)	70 (154)	□ IP54	
Hardwired (Output o-10V)	□ LonWorks®	2541 (100.00)	1078 (42.40)	395 (15.60)	80 (176)	□ IP55*	
Hardwired		2100 (82.70)	1200 (47.20)	321 (12.60)	75 (165)	□ IP54	
(Output 4-20 mA)		2541 (100.00)	1228 (48.30)	395 (15.60)	90 (198)	□ IP55*	

Notes:

- Dimensions in mm (inches) Weights in kg (lbs)
- Weights are approximate

^{*}Recommended for outdoor application.

OPTIONS

- ☐ ECO*PULSE embedded intelligence (diagnostic service available on a subscription basis)
- ☐ Export crating
- ☐ On-site start up by 1 trained Armstrong service provider.

BAS COMMUNICATION

- ☐ Not required
- ☐ Modbus RTU
- ☐ Modbus TCP
- ☐ BACnet™ MS/TP
- □ BACnet™ IP
- ☐ LonWorks®

4

INSTRUMENTATION (FOR THE PUMP CONTROL)	TOTAL QUANTITY	FOR PRIMARY PUMP SPEED CONTROL			
		SENSORLESS	LOCAL PLANT DP	ZONE DP	ZONE RETURN TEMP
☐ Zone dP sensors		N/A	N/A	= qty of zones	N/A
☐ Zone return temperature sensors		N/A	N/A	N/A	= qty of zones
☐ Pump head dP sensor		N/A	1*	N/A	N/A
☐ Plant dP sensor with package		N/A	1	N/A	N/A

^{*} Not required with Design Envelope pumps

INSTRUMENTATION (FOR THE SYSTEM)	TOTAL QUANTITY	
☐ Primary flow sensor		1
☐ Primary supply and return temperature sensors		2
☐ Chiller kW sensors*		= qty of chillers
☐ Condenser temperature sensors		2
☐ Condenser flow sensor		1
☐ Outside air temperature & humidity sensor		1

^{*} Optional if each chiller already has an integrated kW reading

TORONTO

+1 416 755 2291

BUFFALO

+1 716 693 8813

BIRMINGHAM

+44 (0) 8444 145 145

MANCHESTER

+44 (0) 8444 145 145

BANGALORE

+91 (0) 80 4906 3555

SHANGHAI

+86 21 3756 6696

ARMSTRONG FLUID TECHNOLOGY ESTABLISHED 1934

ARMSTRONGFLUIDTECHNOLOGY.COM