

DESIGN ENVELOPE 4380 VIL 65-125 (2.5×2.5×5) 6512-003.0 SUBMITTAL

File No: 101.5525IEC Date: APRIL 18, 2018 Supersedes: 101.5525IEC Date: FEBRUARY 13, 2018

Job:	Representative:	
	_ Order No:	_Date:
Engineer:	_ Submitted by:	_ Date:
Contractor:	_ Approved by:	_ Date:

PUMP DESIGN DATA

No. of pumps:	Tag:		
Capacity:L/s (USgpm)	Head:m (ft)		
Liquid:	Viscosity:		
Temperature: °C (°F)	Specific gravity:		
Suction: 65 mm (2.5")	Discharge: 65 mm (2.5")		

 $\mathsf{MEI} \geq 0.70$

MATERIALS OF CONSTRUCTION

🗆 pn 16

CONSTRUCTION: LPDESF E-coated ductile iron A536 Gr 65-45-12, stainless fitted

□ PN 25 CONSTRUCTION: HPDESF E-coated ductile iron A536 Gr 120-90-2, stainless fitted

MAXIMUM PUMP OPERATING CONDITIONS

🗌 PN 16

16 bar at 49°C (232 psig at 120°F) 10 bar at 121°C (145 psig at 250°F)

PN 25

20 bar at 65°C (290 psig at 149°F) 17 bar at 121°C (247 psig at 250°F)

FLOW READOUT ACCURACY

The Design Envelope model selected will provide flow reading on the controls local keypad & digitally for the BMS. The model readout will be factory tested to ensure $\pm 5\%$ accuracy.

MECHANICAL SEAL DESIGN DATA

Seal	type: 2A	:
	C D C C C C C C C C C C	

Stationary seat: Silicone carbide

Secondary seal: EPDM Spring: Stainless steel

Rotating hardware: Stainless steel

IECM MOTOR AND CONTROL DATA

kW:	3.0		
RPM:	3000		
Motor enclosure:	TEFC		
Volts:			
Phase:	3		
Efficiency:	IE5		
Orientation:	🗆 L5 (default) 🛛 L6		
Protocol (standard):	□ BACnet [™] MS/TP		
	□ BACnet [™] TCP/IP		
	□ Modbus rtu		
Control enclosure:	🗆 Indoor – IP 55		
	🗆 Outdoor – IP 66		
Fused disconnect switch:	Consult factory		
EMI/RFI control:	Integrated filter designed to		
	meet EN61800-3		
Harmonic suppression:	Equivalent: 5% Ac line reac-		
	tor - Supporting IEEE 519-1992		
	requirements**		
-	Fan-cooled, surface cooling		
Ambient temperature:	-10°C to +45°C up to 1000 meters		
	above sea level (+14°F to +113°F,		
	3300 ft)		
Analog I/o:	Two inputs, one output. Output		
	can be configured for voltage		
Distribution	or current		
Digital I/0:	Two inputs, two outputs. Out-		
Dolov outpute	puts can be configured as inputs		
Relay outputs:	Two programmable		

Communication port: 1-RS485

** If supplied with the system electrical details, Armstrong will run a computer simulation of the system wide harmonics. If system harmonic levels are exceeded Armstrong can also recommend additional harmonic mitigation and the costs for such mitigation.

FLUID TYPE	ALL GLYCOLS > 30% WT CONC		ALL OTHER NON-POTABLE FLUIDS		POTABLE (DRINKING) WATER	
Temperature	up to 93°C / 200°F	over 93°C / 200°F	up to 93°C / 200°F	over 93°C / 200°F	up to 93°C / 200°F	over 93°C / 200°F
Rotating face	Silicone carbide		Resin bonded carbon	Antimony loaded carbon	Resin bonded carbon	
Seat elastomer	EPDM (L-cup)	EPDM (O-ring)	EPDM (L-cup)	EPDM (O-ring)	EPDM (L-CUP)	EPDM (O-ring)
Material code	SCsc l epss 2A	SCsc o epss 2A	C-SC L EPSS 2A	ACsc 0 epss 2a	C-sc l epss 2A	C-sc o epss 2A

Design Envelope 4380 VIL

2

OPTIONS

SENSORLESS BUNDLE (STANDARD)

Operation of pump without a remote sensor. Includes:

- Sensorless control
- Flow readout
- Constant flow
- Constant pressure

Minimum system pressure to be maintained

m (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

Operation of multiple pumps without a remote sensor

Minimum system pressure to be maintained m (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

п **ENERGY PERFORMANCE BUNDLE**

Provides energy savings on oversized systems by adjusting pump parameters to on-site conditions. Includes:

- Auto-flow balancing Automatically determines control curve between design flow at on-site system head, and minimum (zero-head) flow for energy savings
- Maximum flow control Limits flow rate to pre-set maximum for potential energy savings

Maximum flow rate L/s (gpm)

*Only available if sensorless bundle is enabled

PROTECTION BUNDLE П

Protects other flow sensitive equipment by setting limits of pump operation. Includes:

- Minimum flow control Attempts to maintain flow rate to pre-set minimum to protect equipment in system
- Bypass valve control Actuates a bypass valve to protect flow sensitive equipment if pre-set minimum flow rate is reached

L/s (gpm)

Minimum flow rate

*Only available if sensorless bundle is enabled

ZONE OPTIMIZATION BUNDLE

Controls pumps to ensure multiple zones are satisfied for heating or cooling

• 2 sensor control - Controls pumps in a 2-zone application to ensure both zones are always satisfied for heating or cooling

DUAL SEASON SETUP

Pre-sets heating and cooling parameters for pumps in 2-pipe systems

Coolina Duty point L/s (gpm) m (ft) at

Minimum system pressure to be maintained m (ft)

Heating

Duty point L/s (qpm) m (ft) at

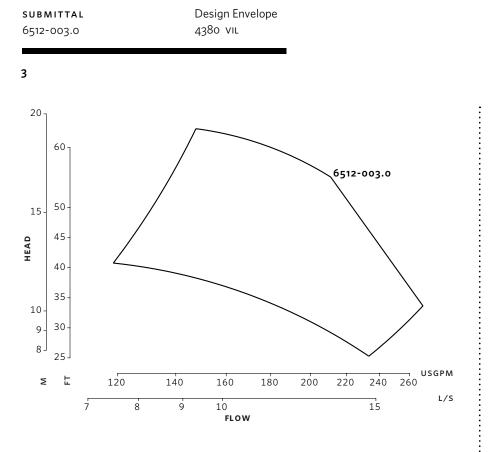
Minimum system pressure to be maintained m (ft)

OPTIONAL SERVICES

ON-SITE PUMP COMMISSIONING

PUMP MANAGER

Online service for sustained pump performance and enhanced reliability.


Available in 3 or 5 year terms

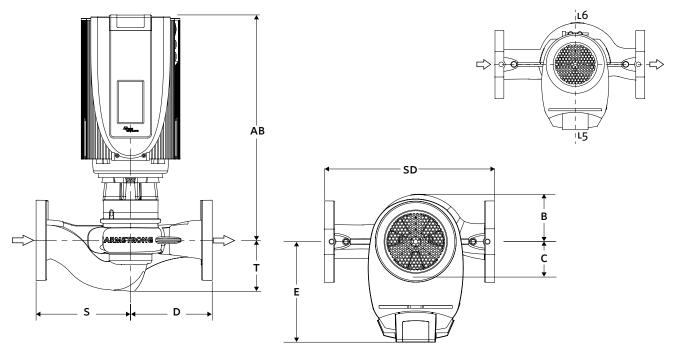
- * Requires an internet connection to be provided by building
- * Includes an extended warranty for parts and labour (wearable parts excluded)

÷

Performance curves are for reference only.

Confirm current performance data with Armstrong ACE Online selection software.

DIMENSION DATA INDOOR (IP 55/TEFC) Size: 65-125 **κW:** 3.0 **RPM:** 3000 **AB:** 460 (18.13) **B:** 121 (4.75) 93 (3.65) c: 183 (7.22) D: **E:** 192 (7.54) 209 (8.22) s: 392 (15.43) SD: **T:** 89 (3.50) Weight: 39.0 (86)


Consult factory for **OUTDOOR** (IP 66/TEFC) dimensions

Dimensions – mm (inch) Weight – kg (lbs)

÷

- Tolerance of ±3 mm (±0.125") should be used
- For exact installation, data please write factory for certified dimensions

CONTROL ORIENTATIONS

TORONTO

23 BERTRAND AVENUE TORONTO, ONTARIO CANADA M1L 2P3 +1 416 755 2291

BUFFALO

93 EAST AVENUE NORTH TONAWANDA, NEW YORK U.S.A. 14120-6594 +1 716 693 8813

BIRMINGHAM

HEYWOOD WHARF, MUCKLOW HILL HALESOWEN, WEST MIDLANDS UNITED KINGDOM B62 8DJ +44 (0) 8444 145 145

MANCHESTER

WOLVERTON STREET MANCHESTER UNITED KINGDOM M11 2ET +44 (0) 8444 145 145

BANGALORE

#59, FIRST FLOOR, 3RD MAIN MARGOSA ROAD, MALLESWARAM BANGALORE, INDIA 560 003 +91 (0) 80 4906 3555

SHANGHAI

unit 903, 888 north sichuan rd. hongkou district, shanghai china 200085 +86 (0) 21 5237 0909

SÃO PAULO

RUA JOSÉ SEMIÃO RODRIGUES AGOSTINHO, 1370 GALPÃO 6 EMBU DAS ARTES SAO PAULO, BRAZIL +55 11 4781 5500

ARMSTRONG FLUID TECHNOLOGY ESTABLISHED 1934

ARMSTRONGFLUIDTECHNOLOGY.COM

ENERACING SENSE