

DESIGN ENVELOPE 4380 VIL

50-125 (2×2×5) | 5012-004.0 | SUBMITTAL

File No: 101.55131EC Date: APRIL 18, 2018 Supersedes: 101.5513IEC Date: FEBRUARY 13, 2018

Job:		_ Representative:		
		Order N	lo:	Date:
Engineer:		Submitt	red by:	Date:
Contractor:		Approved by:		Date:
PUMP DESIGN DATA			IECM MOTOR AND CO	NTROL DATA
No. of pumps:	Tag:		kW:	4.0
Capacity:L/s (USgpm)	_	:		3600
Liquid:			Motor enclosure:	_
Temperature: °C (°F)	-		Volts:	
Suction: 50 mm (2")	Discharge: 50 mm	•	Phase:	3
-	Discharge. 50 mm	(2)	Efficiency:	IE5
MEI ≥ 0.70			Orientation:	☐ L5 (default) ☐
MATERIALS OF CONSTRUCTION			Protocol (standard):	☐ BACNet [™] MS/T
MATERIALS OF CONSTRUCTION				☐ BACnet™ TCP/II
□ PN 16				☐ Modbus RTU
CONSTRUCTION: LPDESF E-coated ductile iron A536 Gr 65-45-12, stainless fitted			Control enclosure:	
□ PN 25				□ Outdoor - IP 6
CONSTRUCTION: HPDESF			Fused disconnect switch:	•
E-coated ductile iron A536 Gr 120-90-2, stainless fitted			EMI/RFI control:	Integrated filter d
MAXIMUM PUMP OPERATING CONDITIONS			Harmonic suppression:	meet EN61800-3
			Harmonic suppression.	tor - Supporting I
□ PN 16 16 bar at 49°C (232 psig at 120°) _{E\}	:		requirements**
10 bar at 121°C (145 psig at 250°			Cooling:	Fan-cooled, surfa
□ PN 25	.,		Ambient temperature:	-10°c to +45°c up
20 bar at 65°C (290 psig at 149	°F)			above sea level (+
17 bar at 121°C (247 psig at 250°F)				3300 ft)
FLOW READOUT ACCURACY		Analog ı/o:	Two inputs, one o	
FLOW READOUT ACCURACY				can be configured

MECHANICAL SEAL DESIGN DATA

Stationary seat: Silicone carbide Seal type: 2A

ALL GLYCOLS > 30% WT CONC

Silicone carbide

EPDM (o-ring)

SCsc o epss 2A

up to 93°C / 200°F over 93°C / 200°F

The Design Envelope model selected will provide flow reading

on the controls local keypad & digitally for the BMS. The model

readout will be factory tested to ensure ±5% accuracy.

Secondary seal: EPDM Spring: Stainless steel

Rotating hardware: Stainless steel

EPDM (L-cup)

SCsc L EPSS 2A

FLUID TYPE

Temperature

Rotating face

Seat elastomer

Material code

** If supplied with the system electrical details, Armstrong will run a computer simulation of the system wide harmonics. If system harmonic levels are exceeded Armstrong can also recommend additional harmonic mitigation and the costs for such mitigation.

up to 93°c / 200°F

EPDM (L-cup)

C-SC L EPSS 2A

⊒ ∟6

lesigned to

line reac-

IEEE 519-1992

ice cooling

to 1000 meters

+14°F to +113°F,

output. Output

d for voltage

or current

Digital I/o: Two inputs, two outputs. Out-

puts can be configured as inputs

POTABLE (DRINKING) WATER

Resin bonded carbon

over 93°C / 200°F

EPDM (o-ring)

C-SC O EPSS 2A

Relay outputs: Two programmable

Communication port: 1-RS485

ALL OTHER NON-POTABLE FLUIDS

over 93°C / 200°F

EPDM (o-ring)

ACsc o epss 2A

Antimony loaded carbon

up to 93°C / 200°F

EPDM (L-cup)

C-SC L EPSS 2A

Resin bonded carbon

2

OPTIONS

SENSORLESS BUNDLE (STANDARD)

Operation of pump without a remote sensor. Includes:

- Sensorless control
- Flow readout
- Constant flow
- Constant pressure

Minimum system pressure to be maintained m (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

□ PARALLEL SENSORLESS

Operation of multiple pumps without a remote sensor

Minimum system pressure to be maintained m (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

☐ ENERGY PERFORMANCE BUNDLE

Provides energy savings on oversized systems by adjusting pump parameters to on-site conditions. Includes:

- Auto-flow balancing Automatically determines control curve between design flow at on-site system head, and minimum (zero-head) flow for energy savings
- Maximum flow control Limits flow rate to pre-set maximum for potential energy savings

Maximum flow rate L/s (gpm)

□ PROTECTION BUNDLE

Protects other flow sensitive equipment by setting limits of pump operation. Includes:

- Minimum flow control Attempts to maintain flow rate to pre-set minimum to protect equipment in system
- Bypass valve control Actuates a bypass valve to protect flow sensitive equipment if pre-set minimum flow rate is reached

Minimum flow rate L/s (gpm)

ZONE OPTIMIZATION BUNDLE

Controls pumps to ensure multiple zones are satisfied for heating or cooling

 2 sensor control - Controls pumps in a
 2-zone application to ensure both zones are always satisfied for heating or cooling

□ DUAL SEASON SETUP

Pre-sets heating and cooling parameters for pumps in 2-pipe systems

Cooling

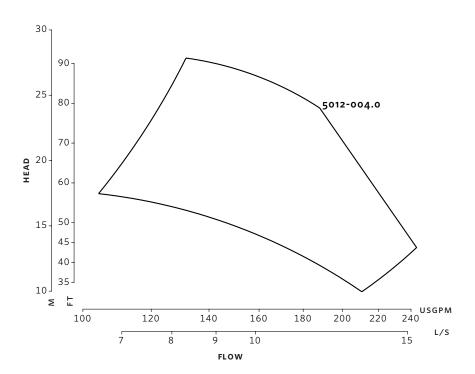
Dutungint	1 /a (anm)		
Duty point	L/s (gpm)		
at	m (ft)		
Minimum system pres	sure to be maintained n (ft)		
Heating			
Duty point	L/s (gpm)		
at	m (ft)		
Minimum system pres	sure to be maintained n (ft)		

OPTIONAL SERVICES

ON-SITE PUMP COMMISSIONING

PUMP MANAGER

Online service for sustained pump performance and enhanced reliability.


Available in 3 or 5 year terms

- * Requires an internet connection to be provided by building
- * Includes an extended warranty for parts and labour (wearable parts excluded)

^{*}Only available if sensorless bundle is enabled

^{*}Only available if sensorless bundle is enabled

3

Performance curves are for reference only.

Confirm current performance data with Armstrong ACE Online selection software.

DIMENSION DATA

INDOOR (IP 55/TEFC)

Size: 50-125
kW: 4.0

RPM: 3600

AB: 457 (18.01)

B: 109 (4.31)

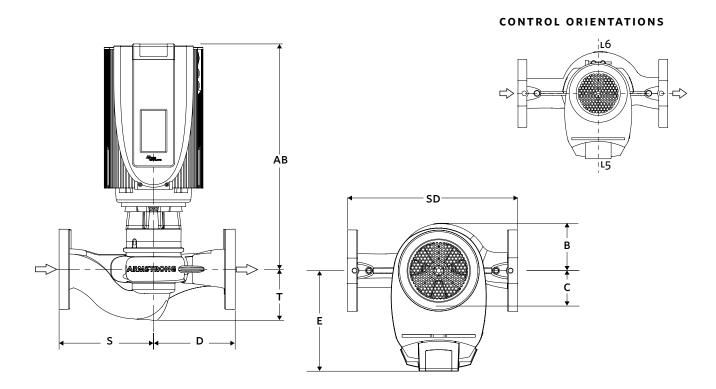
C: 89 (3.49)

D: 154 (6.07)

E: 191 (7.54)

S: 180 (7.07)

SD: 334 (13.14)


T: 79 (3.12)

Weight: 38.5 (85)

Consult factory for **OUTDOOR** (IP 66/TEFC) dimensions

Dimensions - mm (inch) Weight - kg (lbs)

- Tolerance of ± 3 mm (± 0.125 ") should be used
- For exact installation, data please write factory for certified dimensions

TORONTO

23 BERTRAND AVENUE TORONTO, ONTARIO CANADA M1L 2P3 +1 416 755 2291

BUFFALO

93 EAST AVENUE NORTH TONAWANDA, NEW YORK U.S.A. 14120-6594 +1 716 693 8813

BIRMINGHAM

HEYWOOD WHARF, MUCKLOW HILL HALESOWEN, WEST MIDLANDS UNITED KINGDOM B62 8DJ +44 (0) 8444 145 145

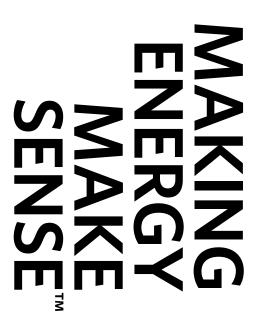
MANCHESTER

WOLVERTON STREET MANCHESTER UNITED KINGDOM M11 2ET +44 (0) 8444 145 145

BANGALORE

#59, FIRST FLOOR, 3RD MAIN MARGOSA ROAD, MALLESWARAM BANGALORE, INDIA 560 003 +91 (0) 80 4906 3555

SHANGHAI


UNIT 903, 888 NORTH SICHUAN RD. HONGKOU DISTRICT, SHANGHAI CHINA 200085 +86 (0) 21 5237 0909

SÃO PAULO

rua josé semião rodrigues agostinho, 1370 galpão 6 embu das artes sao paulo, brazil +55 11 4781 5500

ARMSTRONG FLUID TECHNOLOGY ESTABLISHED 1934

ARMSTRONGFLUIDTECHNOLOGY.COM

