

DESIGN ENVELOPE 4372 TANGO 80-125 (3×3×5) 8012-005.5 **SUBMITTAL**

File No: 102.5137IEC Date: APRIL 18, 2018 Supersedes: 102.5137IEC Date: FEBRUARY 13, 2018

Job:	_ Representative:		
	Order No:	Date:	
Engineer:	Submitted by:	Date:	
Contractor:	_ Approved by:	Date:	

PUMP DESIGN DATA

No. of pumps:	Тад:
Total system design flow:	L/s (USgpm)
Head: m (ft)	Capacity split%
Flow per pump head:	L/s (USgpm)
Parallel flow:	L/s (USgpm)
Liquid:	Viscosity:
Temperature: °C (°F)	Specific gravity:
Suction: 80 mm (3")	Discharge: 80 mm (3")

 $\text{MEI} \geq 0.70$

MATERIALS OF CONSTRUCTION

🗆 pn 16

CONSTRUCTION: LPDESF

E-coated ductile iron A536 Gr 65-45-12, stainless fitted □ PN 25

CONSTRUCTION: HPDESF

E-coated ductile iron A536 Gr 120-90-2, stainless fitted

MAXIMUM PUMP OPERATING CONDITIONS

PN 16
16 bar at 49°C (232 psig at 120°F)
10 bar at 121°C (145 psig at 250°F)
PN 25

20 bar at 65°C (290 psig at 149°F) 17 bar at 121°C (247 psig at 250°F)

FLOW READOUT ACCURACY

The Design Envelope model selected will provide flow reading on the controls local keypad & digitally for the BMS. The model readout will be factory tested to ensure $\pm 5\%$ accuracy.

IECM MOTOR AND CONTROL DATA

kW:	5.5
RPM:	3600
Motor enclosure:	TEFC
Volts:	
Phase:	3
Efficiency:	IE5
Orientation:	Standard
Protocol (standard):	□ BACnet [™] мs/тр
	□ BACnet [™] TCP/IP □ Modbus RTU
Control enclosure:	🗆 Indoor – IP 55
	🗆 Outdoor – IP 66
Fused disconnect switch:	Consult factory
ЕМІ/RFI control:	Integrated filter designed to meet
	en61800-3
Harmonic suppression:	Equivalent: 5% Ac line reactor
	- Supporting IEEE 519-1992
	requirements**
Cooling:	Fan-cooled, surface cooling
Ambient temperature:	-10°c to +45°c up to 1000 meters
	above sea level (+14°F to +113°F,
	3300 ft)
Analog ı/o:	Two inputs, one output. Output
	can be configured for voltage
	or current
Digital ı/o:	Two inputs, two outputs. Outputs
	can be configured as inputs
Relay outputs:	Two programmable
Communication port:	1-RS485

** If supplied with the system electrical details, Armstrong will run a computer simulation of the system wide harmonics. If system harmonic levels are exceeded Armstrong can also recommend additional harmonic mitigation and the costs for such mitigation.

MECHANICAL SEAL DESIGN DATA

Seal type: 2A Stationary seat: Silicone carbide Secondary seal: EPDM

Spring: Stainless steel

el Rotating hardware: Stainless steel

FLUID TYPE	ALL GLYCOLS >	30% WT CONC	ALL OTHER NON-POTABLE FLUIDS		POTABLE (DRINKING) WATER	
Temperature	up to 93°C / 200°F	over 93°C / 200°F	up to 93°c / 200°F	over 93°C / 200°F	up to 93°C / 200°F	over 93°C / 200°F
Rotating face	Silicone carbide		Resin bonded carbon	Antimony loaded carbon	Resin bonded carbon	
Seat elastomer	EPDM (L-CUP)	EPDM (O-ring)	EPDM (L-CUP)	EPDM (O-ring)	EPDM (L-CUP)	EPDM (O-ring)
Material code	SCsc l epss 2A	SCsc o epss 2A	C-SC L EPSS 2A	ACsc 0 epss 2A	C-sc l epss 2A	C-sc o epss 2A

2

OPTIONS

SENSORLESS BUNDLE (STANDARD)

Operation of pump without a remote sensor. Includes:

- Sensorless control
- Flow readout
- Constant flow
- Constant pressure

Minimum system pressure to be maintained

m (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

PARALLEL SENSORLESS (STANDARD)

Operation of multiple pumps without a remote sensor

Minimum system pressure to be maintained m (ft)

 If minimum maintained system pressure is not known: Default to 40% of design head

ENERGY PERFORMANCE BUNDLE

Provides energy savings on oversized systems by adjusting pump parameters to on-site conditions. Includes:

- Auto-flow balancing Automatically determines control curve between design flow at on-site system head, and minimum (zero-head) flow for energy savings
- Maximum flow control Limits flow rate to pre-set maximum for potential energy savings

Maximum flow rate L/s (gpm)

 $^{\star}\mbox{Only}$ available if sensorless bundle is enabled

PROTECTION BUNDLE

Protects other flow sensitive equipment by setting limits of pump operation. Includes:

- Minimum flow control Attempts to maintain flow rate to pre-set minimum to protect equipment in system
- Bypass valve control Actuates a bypass valve to protect flow sensitive equipment if pre-set minimum flow rate is reached

Minimum flow rate L/s (gpm)

*Only available if sensorless bundle is enabled

□ ZONE OPTIMIZATION BUNDLE

Controls pumps to ensure multiple zones are satisfied for heating or cooling

• 2 sensor control – Controls pumps in a 2-zone application to ensure both zones are always satisfied for heating or cooling

DUAL SEASON SETUP

Pre-sets heating and cooling parameters for pumps in 2-pipe systems

Cooling Duty point L/s (gpm)

at m (ft)

Minimum system pressure to be maintained m (ft)

Heating

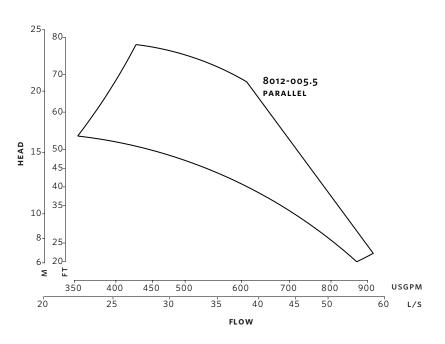
Duty point _____ L/s (gpm) at _____ m (ft)

Minimum system pressure to be maintained m (ft)

OPTIONAL SERVICES

ON-SITE PUMP COMMISSIONING

PUMP MANAGER

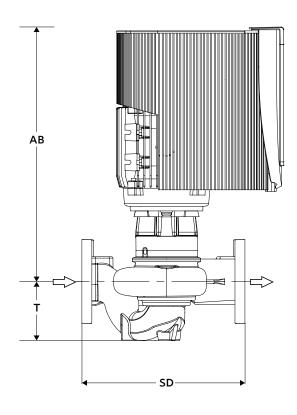

Online service for sustained pump performance and enhanced reliability.

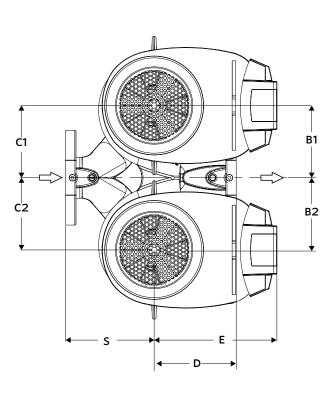
Available in 3 or 5 year terms

- * Requires an internet connection to be provided by building
- * Includes an extended warranty for parts and labour (wearable parts excluded)

INDOOR (IP 55/TEFC) Size: 80-125 **kW:** 5.5 **RPM:** 3600 466 (18.33) AB: **B1:** 152 (6.00) **B2:** 152 (6.00) 255 (10.05) C1: 255 (10.05) C2: 187 (7.35) D: 191 (7.54) E: s: 173 (6.82) **sd:** 360 (14.17) **T:** 130 (5.13) Weight: 76.7 (169)

DIMENSION DATA


Consult factory for **OUTDOOR** (IP 66/TEFC) dimensions


Dimensions – mm (inch) Weight – kg (lbs)

÷

• Tolerance of ±3 mm (±0.125") should be used

• For exact installation, data please write factory for certified dimensions

Performance curves are for reference only. Confirm current performance data with Armstrong Ace Online selection software.

TORONTO

23 BERTRAND AVENUE TORONTO, ONTARIO CANADA M1L 2P3 +1 416 755 2291

BUFFALO

93 EAST AVENUE NORTH TONAWANDA, NEW YORK U.S.A. 14120-6594 +1 716 693 8813

BIRMINGHAM

HEYWOOD WHARF, MUCKLOW HILL HALESOWEN, WEST MIDLANDS UNITED KINGDOM B62 8DJ +44 (0) 8444 145 145

MANCHESTER

WOLVERTON STREET MANCHESTER UNITED KINGDOM M11 2ET +44 (0) 8444 145 145

BANGALORE

#59, FIRST FLOOR, 3RD MAIN MARGOSA ROAD, MALLESWARAM BANGALORE, INDIA 560 003 +91 (0) 80 4906 3555

SHANGHAI

unit 903, 888 north sichuan rd. hongkou district, shanghai china 200085 +86 (0) 21 5237 0909

SÃO PAULO

RUA JOSÉ SEMIÃO RODRIGUES AGOSTINHO, 1370 GALPÃO 6 EMBU DAS ARTES SAO PAULO, BRAZIL +55 11 4781 5500

ARMSTRONG FLUID TECHNOLOGY ESTABLISHED 1934

ARMSTRONGFLUIDTECHNOLOGY.COM

ENERGY SENSE