DESIGN ENVELOPE 4322 TANGO|
$\begin{aligned} & 32-125(1.25 \times 1.25 \times 5)\end{aligned}|3212-001.1|$ SUBMITTAL

File No: 102.5055IEC Date: february 14, 2019 Supersedes: NEW Date: NEW
\qquad Representative: \qquad
\qquad Order No: \qquad Date: \qquad
Engineer: \qquad Submitted by: \qquad Date: \qquad Contractor: \qquad Approved by: \qquad Date: \qquad

PUMP DESIGN DATA

No. of pumps: \qquad Tag:
Total system design flow: \qquad L/s (USgpm) Head: \qquad m (ft) Capacity split \qquad
Flow per pump head: \qquad L/s (USgpm)
Parallel flow: \qquad L/s (USgpm)
Liquid: \qquad Viscosity:
Temperature: \qquad ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ Specific gravity: \qquad
Suction: 32 mm (1.25")
Discharge: 32 mm (1.25")
MEI ≥ 0.70

MATERIALS OF CONSTRUCTION

PN 16CONSTRUCTION: LPDESF
E-coated ductile iron A536 Gr 65-45-12, stainless fittedPN 25
construction: hpdesf
E-coated ductile iron A536 Gr 120-90-2, stainless fitted

MAXIMUM PUMP OPERATING CONDITIONS

PN 1616 bar at $49^{\circ} \mathrm{C}\left(232\right.$ psig at $\left.120^{\circ} \mathrm{F}\right)$
7 bar at $150^{\circ} \mathrm{C}\left(100 \mathrm{psig}\right.$ at $\left.300^{\circ} \mathrm{F}\right)$

$\square \quad$ PN 25

25 bar at $65^{\circ} \mathrm{C}\left(362\right.$ psig at $\left.149^{\circ} \mathrm{F}\right)$
21 bar at $150^{\circ} \mathrm{C}\left(304\right.$ psig at $300^{\circ} \mathrm{F}$)

MECHANICAL SEAL DESIGN DATA

See file no. 43.50 for standard mechanical seal details as indicated below

Armstrong seal reference number
$\square \mathrm{c} 1$ (a)Others: \qquad

FLOW READOUT ACCURACY

The Design Envelope model selected will provide flow reading on the controls local keypad \& digitally for the bмs. The model readout will be factory tested to ensure $\pm 5 \%$ accuracy.

DEPM MOTOR AND CONTROL DATA

kW: 1.1
RPM: 3300
Motor enclosure: TEFC
Volts: \qquad
Phase: 3
Efficiency: IE5
Orientation: Standard
Protocol (standard): $\square \mathrm{BACnet}^{\mathrm{TM}} \mathrm{MS} / \mathrm{TP}$ $\square B^{-1 C n e t}{ }^{\text {TM }}$ TCP/IP \square Modbus RTU
Control enclosure:Indoor - IP 55 Outdoor - IP 66
Fused disconnect switch: Consult factory
EMI/RFI control: Integrated filter designed to meet En61800-3
Harmonic suppression: Equivalent: 5\% AC line reactor - Supporting IEeE 519-1992 requirements**
Cooling: Fan-cooled, surface cooling
Ambient temperature: $-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ up to 1000 meters above sea level $\left(+14^{\circ} \mathrm{F}\right.$ to $+113^{\circ} \mathrm{F}$, 3300 ft)
Analog I/o: Two inputs, one output. Output can be configured for voltage or current
Digital I/o: Two inputs, two outputs. Outputs can be configured as inputs
Relay outputs: Two programmable
Communication port: 1-RS485
** If supplied with the system electrical details, Armstrong will run a computer simulation of the system wide harmonics. If system harmonic levels are exceeded Armstrong can also recommend additional harmonic mitigation and the costs for such mitigation.

OPTIONS

SENSORLESS BUNDLE (STANDARD)

Operation of pump without a remote sensor. Includes:

- Sensorless control
- Flow readout
- Constant flow
- Constant pressure

Minimum system pressure to be maintained m (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

PARALLEL SENSORLESS (STANDARD)

Operation of multiple pumps without a remote sensor

Minimum system pressure to be maintained m (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

\square ENERGY PERFORMANCE BUNDLE

Provides energy savings on oversized systems by adjusting pump parameters to on-site conditions. Includes:

- Auto-flow balancing - Automatically determines control curve between design flow at on-site system head, and minimum (zero-head) flow for energy savings
- Maximum flow control - Limits flow rate to pre-set maximum for potential energy savings

Maximum flow rate \qquad L/s (gpm)
*Only available if sensorless bundle is enabled

$\square \quad$ PROTECTION BUNDLE

Protects other flow sensitive equipment by setting limits of pump operation. Includes:

- Minimum flow control - Attempts to maintain flow rate to pre-set minimum to protect equipment in system
- Bypass valve control - Actuates a bypass valve to protect flow sensitive equipment if pre-set minimum flow rate is reached

Maximum flow rate

\qquad L/s (gpm)

3

Performance curves are for reference only.
Confirm current performance data with Armstrong ADEPT Quote or ADEPT Select selection software.

DIMENSION DATA

INDOOR (IP 55/TEFC)

Size: 32-125
кW: 1.1
RPM: 3300
Frame: 90S
AB: 524 (20.62)
B1: 148 (5.83)
B2: 148 (5.83)
C1: 279 (11.00)
C2: 279 (11.00)
D: 178 (7.02)
E: 205 (8.08)
s: 102 (4.00)
SD: 280 (11.02)
T: 96 (3.77)
Weight: 54.9 (121)

Consult factory for OUTDOOR (IP 66/TEFC) dimensions

Dimensions - mm (inch)
Weight - kg (lbs)

- Tolerance of $\pm 3 \mathrm{~mm}\left(\pm 0.125^{\prime \prime}\right)$ should be used
- For exact installation, data please write factory for certified dimensions

TORONTO

23 BERTRAND AVENUE
TORONTO, ONTARIO
CANADA
M1L 2P3
+14167552291

BUFFALO
93 EAST AVENUE
NORTH TONAWANDA, NEW YORK
U.S.A.

14120-6594
+1716 6938813

BIRMINGHAM

HEYWOOD WHARF, MUCKLOW HILL
HALESOWEN, WEST MIDLANDS
UNITED KINGDOM
B62 8DJ
+44 (0) 8444145145

MANCHESTER
WOLVERTON STREET
MANCHESTER
UNITED KINGDOM
M11 2ET
+44 (0) 8444145145

BANGALORE

\#59, FIRST FLOOR, 3RD MAIN
MARGOSA ROAD, MALLESWARAM
BANGALORE, INDIA
560003
+91 (0) 8049063555

SHANGHAI
UNIT 903, 888 NORTH SICHUAN RD
HONGKOU DISTRICT, SHANGHAI
CHINA

1370 GALPÃO 6
EMBU DAS ARTES
SAO PAULO, BRAZIL
+55 1147851330
200085
+86 (0) 2152370909

SÃO PAULO

 \square