

DESIGN ENVELOPE 4300 VIL

FLOW READOUT ACCURACY

The Design Envelope model selected will provide flow reading

on the controls local keypad & digitally for the вмs. The model

readout will be factory tested to ensure ±5% accuracy.

32-125 (1.25×1.25×5) | 3212-00.75 | SUBMITTAL

File No: 101.5403IEC

Date: MARCH 15, 2019

Supersedes: 101.5403IEC

Date: FEBRUARY 14, 2019

Job:	Represe	entative:	
	Order N	No:	Date:
Engineer: Submi		ted by:	Date:
Contractor: Approv		red by:	Date:
PUMP DESIGN DATA		DEPM MOTOR AND CO	ONTROL DATA
No. of pumps:	Tag:	kW:	0.75
Capacity:L/s (USgpm)	Head:m (ft)	RPM:	3000
Liquid:	Viscosity:	Motor enclosure:	TEFC
Temperature: °C (°F)		Volts:	
	Discharge: 32 mm (1.25")	Phase:	3
	= 1. c. 1	Efficiency:	IE5
MEI ≥ 0.70		•	□ L5 (default) □ L6
		Protocol (standard):	
		•	☐ BACnet [™] TCP/IP
MATERIALS OF CONSTRUCTION			☐ Modbus RTU
□ pn 16		Control enclosure:	□ Indoor - IP 55 □ Outdoor - IP 66
CONSTRUCTION: LPDEBF		Fused disconnect switch:	
E-coated ductile iron A 536 Gr 565-45-12, bronze fitted		•	Integrated filter designed to
			meet EN61800-3
		Harmonic suppression:	Equivalent: 5% Ac line reac-
MAXIMUM PUMP OPERATIN	IG CONDITIONS	•	tor - Supporting IEEE 519-1992
□ PN 16		•	requirements**
16 bar at 49°c (232 psig at 120°	F)	•	Fan-cooled, surface cooling
7 bar at 150°C (100 psig at 300°	°F)	Ambient temperature:	-10°C to +45°C up to 1000 meters
		•	above sea level (+14°F to +113°F, 3300 ft)
MECHANICAL SEAL DESIGN	DATA	Analog 1/0:	Two inputs, one output. Output
MECHANICAL SEAL DESIGN DATA		,	can be configured for voltage
See file no. 43.50 for standard mechanical seal details as indicated below		•	or current
		Digital ı/o:	Two inputs, two outputs. Out-
Armstrong seal reference number		•	puts can be configured as inputs
□ c1 (a) □ Others:		•	Two programmable
		Communication port:	1-RS485
		•	

^{**} If supplied with the system electrical details, Armstrong will run a computer simulation of the system wide harmonics. If system harmonic levels are exceeded Armstrong can also recommend additional harmonic mitigation and the costs for such mitigation.

2

OPTIONS

SENSORLESS BUNDLE (STANDARD)

Operation of pump without a remote sensor. Includes:

- Sensorless control
- Flow readout
- Constant flow
- Constant pressure

 $\begin{array}{c} \mbox{Minimum system pressure to be maintained} \\ \mbox{m (ft)} \end{array}$

* If minimum maintained system pressure is not known: Default to 40% of design head

□ PARALLEL SENSORLESS

Operation of multiple pumps without a remote sensor

 $\label{eq:minimum} \mbox{Minimum system pressure to be maintained} \\ \mbox{m (ft)}$

* If minimum maintained system pressure is not known: Default to 40% of design head

☐ ENERGY PERFORMANCE BUNDLE

Provides energy savings on oversized systems by adjusting pump parameters to on-site conditions. Includes:

- Auto-flow balancing Automatically determines control curve between design flow at on-site system head, and minimum (zero-head) flow for energy savings
- Maximum flow control Limits flow rate to pre-set maximum for potential energy savings

Maximum flow rate L/s (gpm)

□ PROTECTION BUNDLE

Protects other flow sensitive equipment by setting limits of pump operation. Includes:

- Minimum flow control Attempts to maintain flow rate to pre-set minimum to protect equipment in system
- Bypass valve control Actuates a bypass valve to protect flow sensitive equipment if pre-set minimum flow rate is reached

Minimum flow rate L/s (gpm)

ZONE OPTIMIZATION BUNDLE

Controls pumps to ensure multiple zones are satisfied for heating or cooling

 2 sensor control - Controls pumps in a
 2-zone application to ensure both zones are always satisfied for heating or cooling

☐ DUAL SEASON SETUP

Pre-sets heating and cooling parameters for pumps in 2-pipe systems

Cooling

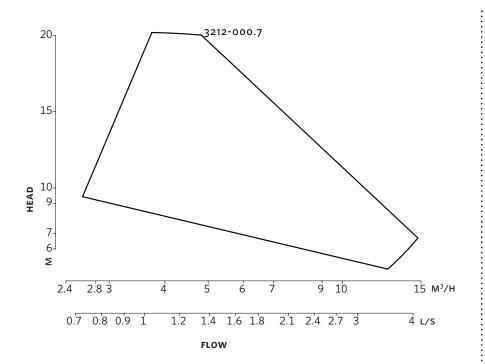
Duty point	L/s (gpm)
at	m (ft)
Minimum system pressu m (
Heating	
Duty point	L/s (gpm)
at	m (ft)
Minimum system pressu	re to be maintained
m ((ft)

OPTIONAL SERVICES

ON-SITE PUMP COMMISSIONING

PUMP MANAGER

Online service for sustained pump performance and enhanced reliability.


Available in 3 or 5 year terms

- * Requires an internet connection to be provided by building
- * Includes an extended warranty for parts and labour (wearable parts excluded)

^{*}Only available if sensorless bundle is enabled

^{*}Only available if sensorless bundle is enabled

3

Performance curves are for reference only.

Confirm current performance data with Armstrong ADEPT Quote or ADEPT Select selection software.

DIMENSION DATA

INDOOR (IP 55/TEFC)

Size: 32-125 kW: 0.75 kPM: 3000 Frame: 71

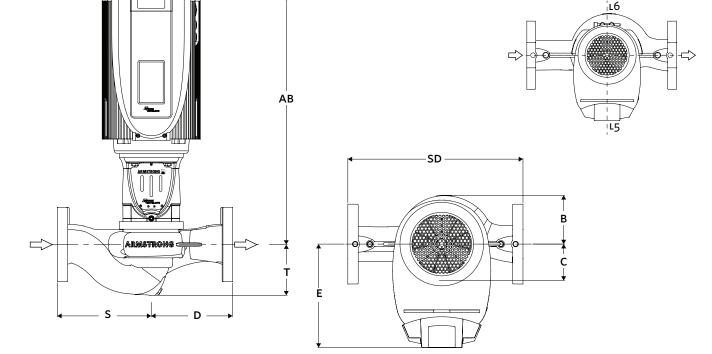
AB: 535 (21.05) **B:** 89 (3.51)

c: 81 (3.20)

D: 134 (5.26)

E: 208 (8.18) **S:** 146 (5.76)

sp: 280 (11.02)


T: 76 (3.00) **Weight:** 32.2 (71)

Consult factory for **OUTDOOR** (IP 66/TEFC) dimensions

Dimensions - mm (inch) Weight - kg (lbs)

- Tolerance of ± 3 mm (± 0.125 ") should be used
- For exact installation, data please write factory for certified dimensions

TORONTO

23 BERTRAND AVENUE TORONTO, ONTARIO CANADA M1L 2P3 +1 416 755 2291

BUFFALO

93 EAST AVENUE NORTH TONAWANDA, NEW YORK U.S.A. 14120-6594 +1 716 693 8813

BIRMINGHAM

HEYWOOD WHARF, MUCKLOW HILL HALESOWEN, WEST MIDLANDS UNITED KINGDOM B62 8DJ +44 (0) 8444 145 145

MANCHESTER

WOLVERTON STREET MANCHESTER UNITED KINGDOM M11 2ET +44 (0) 8444 145 145

BANGALORE

#59, FIRST FLOOR, 3RD MAIN MARGOSA ROAD, MALLESWARAM BANGALORE, INDIA 560 003 +91 (0) 80 4906 3555

SHANGHAI

UNIT 903, 888 NORTH SICHUAN RD. HONGKOU DISTRICT, SHANGHAI CHINA 200085 +86 (0) 21 5237 0909

SÃO PAULO

RUA JOSÉ SEMIÃO RODRIGUES AGOSTINHO, 1370 GALPÃO 6 EMBU DAS ARTES SAO PAULO, BRAZIL +55 11 4785 1330

ARMSTRONG FLUID TECHNOLOGY ESTABLISHED 1934

ARMSTRONGFLUIDTECHNOLOGY.COM

