

DESIGN ENVELOPE 4300 VIL 65-125 (2.5×2.5×5) 6512-002.2 SUBMITTAL

File No: 101.5019IEC Date: APRIL 18, 2018 Supersedes: 101.5019IEC Date: FEBRUARY 13, 2018

Job:	Representative:	
	Order No:	Date:
Engineer:	Submitted by:	Date:
Contractor:	Approved by:	Date:

PUMP DESIGN DATA

No. of pumps:		Тад:
Capacity:L/s	s (USgpm)	Head:m (ft)
Liquid:		Viscosity:
Temperature:	°C (°F)	Specific gravity:
Suction: 65 mm (2.5")		Discharge: 65 mm (2.5")

 $MEI \ge 0.70$

MATERIALS OF CONSTRUCTION

PN 16 CONSTRUCTION: LPDESF E-coated ductile iron A536 Gr 65-45-12, stainless fitted PN 25 CONSTRUCTION: HPDESF

E-coated ductile iron A536 Gr 120-90-2, stainless fitted

MAXIMUM PUMP OPERATING CONDITIONS

- PN 16
 16 bar at 49°C (232 psig at 120°F)
 7 bar at 150°C (100 psig at 300°F)
- PN 25
 25 bar at 65°C (362 psig at 149°F)
 21 bar at 150°C (304 psig at 300°F)

MECHANICAL SEAL DESIGN DATA

See file no. 43.50 for standard mechanical seal details as indicated below

Armstrong seal reference number

□ c1 (a) □ Others: _____

FLOW READOUT ACCURACY

The Design Envelope model selected will provide flow reading on the controls local keypad & digitally for the BMS. The model readout will be factory tested to ensure $\pm 5\%$ accuracy.

IECM MOTOR AND CONTROL DATA

kW:	2.2
RPM:	3000
Motor enclosure:	TEFC
Volts:	
Phase:	3
Efficiency:	IE5
Orientation:	□ L5 (default) □ L6
Protocol (standard):	□ BACnet [™] MS/TP
	□ BACnet [™] TCP/IP
	□ Modbus rtu
Control enclosure:	🗆 Indoor – IP 55
	🗆 Outdoor – IP 66
Fused disconnect switch:	Consult factory
EMI/RFI control:	Integrated filter designed to
	meet EN61800-3
Harmonic suppression:	Equivalent: 5% Ac line reac-
	tor - Supporting IEEE 519-1992
Cooline	requirements**
-	Fan-cooled, surface cooling
Ambient temperature:	-10°C to +45°C up to 1000 meters above sea level (+14°F to +113°F,
	3300 ft)
Analog ı/o:	Two inputs, one output. Output
-	can be configured for voltage
	or current
Digital ı/o:	Two inputs, two outputs. Out-
	puts can be configured as inputs
Relay outputs:	Two programmable
Communication port:	1-rs485

** If supplied with the system electrical details, Armstrong will run a computer simulation of the system wide harmonics. If system harmonic levels are exceeded Armstrong can also recommend additional harmonic mitigation and the costs for such mitigation.

2

OPTIONS

SENSORLESS BUNDLE (STANDARD)

Operation of pump without a remote sensor. Includes:

- Sensorless control
- Flow readout
- Constant flow
- Constant pressure

Minimum system pressure to be maintained

m (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

Operation of multiple pumps without a remote sensor

Minimum system pressure to be maintained m (ft)

 If minimum maintained system pressure is not known: Default to 40% of design head

ENERGY PERFORMANCE BUNDLE

Provides energy savings on oversized systems by adjusting pump parameters to on-site conditions. Includes:

- Auto-flow balancing Automatically determines control curve between design flow at on-site system head, and minimum (zero-head) flow for energy savings
- Maximum flow control Limits flow rate to pre-set maximum for potential energy savings

Maximum flow rate L/s (gpm)

 $^{\star}\mbox{Only}$ available if sensorless bundle is enabled

□ **PROTECTION BUNDLE**

Protects other flow sensitive equipment by setting limits of pump operation. Includes:

- Minimum flow control Attempts to maintain flow rate to pre-set minimum to protect equipment in system
- Bypass valve control Actuates a bypass valve to protect flow sensitive equipment if pre-set minimum flow rate is reached

L/s (gpm)

Minimum flow rate

*Only available if sensorless bundle is enabled

□ ZONE OPTIMIZATION BUNDLE

Controls pumps to ensure multiple zones are satisfied for heating or cooling

• 2 sensor control – Controls pumps in a 2-zone application to ensure both zones are always satisfied for heating or cooling

DUAL SEASON SETUP

Pre-sets heating and cooling parameters for pumps in 2-pipe systems

Duty point _____ L/s (gpm) at _____ m (ft)

Minimum system pressure to be maintained

m (ft)

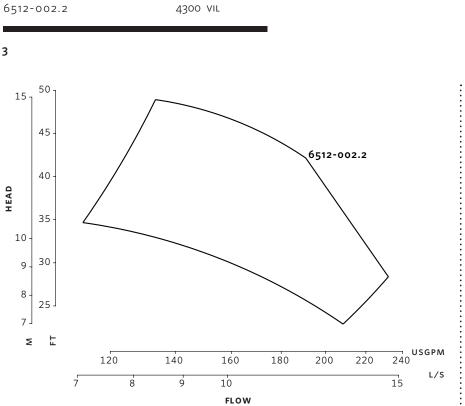
Heating

Duty point _____ L/s (gpm) at m (ft)

Minimum system pressure to be maintained m (ft)

OPTIONAL SERVICES

ON-SITE PUMP COMMISSIONING


PUMP MANAGER

Online service for sustained pump performance and enhanced reliability.

Available in 3 or 5 year terms

- * Requires an internet connection to be provided by building
- * Includes an extended warranty for parts and labour (wearable parts excluded)

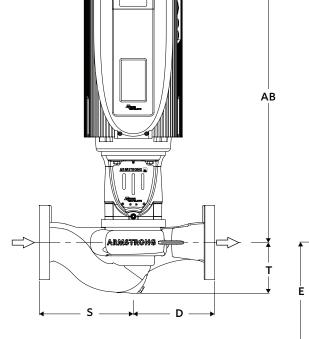
Design Envelope

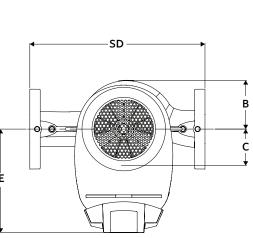
DIMENSION DATA INDOOR (IP 55/TEFC) Size: 65-125 **κW:** 2.2 **RPM:** 3000 **AB:** 518 (20.39) **B:** 120 (4.73) **c:** 93 (3.65) 183 (7.22) D: **E:** 191 (7.54) 209 (8.22) s: SD: 392 (15.43) **T:** 89 (3.50) Weight: 38.5 (85)

Performance curves are for reference only. Confirm current performance data with Armstrong ACE Online selection software. Consult factory for **OUTDOOR** (IP 66/TEFC) dimensions

Dimensions – mm (inch) Weight – kg (lbs)

÷


• Tolerance of ±3 mm (±0.125") should be used


¦ге naia

L5

• For exact installation, data please write factory for certified dimensions

CONTROL ORIENTATIONS

3

SUBMITTAL

TORONTO

23 BERTRAND AVENUE TORONTO, ONTARIO CANADA M1L 2P3 +1 416 755 2291

BUFFALO

93 EAST AVENUE NORTH TONAWANDA, NEW YORK U.S.A. 14120-6594 +1 716 693 8813

BIRMINGHAM

HEYWOOD WHARF, MUCKLOW HILL HALESOWEN, WEST MIDLANDS UNITED KINGDOM B62 8DJ +44 (0) 8444 145 145

MANCHESTER

WOLVERTON STREET MANCHESTER UNITED KINGDOM M11 2ET +44 (0) 8444 145 145

BANGALORE

#59, FIRST FLOOR, 3RD MAIN MARGOSA ROAD, MALLESWARAM BANGALORE, INDIA 560 003 +91 (0) 80 4906 3555

SHANGHAI

unit 903, 888 north sichuan rd. hongkou district, shanghai china 200085 +86 (0) 21 5237 0909

SÃO PAULO

RUA JOSÉ SEMIÃO RODRIGUES AGOSTINHO, 1370 GALPÃO 6 EMBU DAS ARTES SAO PAULO, BRAZIL +55 11 4781 5500

ARMSTRONG FLUID TECHNOLOGY ESTABLISHED 1934

ARMSTRONGFLUIDTECHNOLOGY.COM

ENERGY SENSE