

Date: ___

Date: __

_Date:

DESIGN ENVELOPE 4280 END SUCTION

50-125 (2×1.5×5) | 4012-001.5 | SUBMITTAL

File No: 103.5709IEC Date: MARCH 25, 2021 Supersedes: 103.5709IEC Date: SEPTEMBER 5, 2019

Job:		Representative:			
	Order N	No:	Date		
Engineer:	Submit	Submitted by:			
Contractor: Appro		ved by:			
PUMP DESIGN DATA	:	DEPM MOTOR AND CO	ONTROL DATA		
No. of pumps: Tag:		kW:	1.5		
Capacity:L/s (USgpm) Head: _	m (ft)	RPM:	3000		
Liquid: Viscosi	ity:	Motor enclosure:	TEFC		
Temperature: °C (°F) Specific	c gravity:	•			
Suction: 50 mm (2") Discha	rge: 40 mm (1.5")	Phase:	_		
MEI ≥ 0.70		Efficiency:	-		
WEI 2 0.70		•	☐ L5 (default)		
MATERIALS OF CONSTRUCTION		Protocol (standard):			
□ PN 16		☐ BACnet™ TCP/			
CONSTRUCTION: LPDESF			☐ Modbus RTU		
E-coated ductile iron A536 Gr 65-45-	Control enclosure:				
□ PN 25	Fused disconnect switch:	-			
CONSTRUCTION: HPDESF	EMI/RFI CONTROI:	Integrated filter meet EN61800-			
E-coated ductile iron A536 Gr 120-90	Harmonic suppression:				
MAXIMUM PUMP OPERATING CON	Harmonic suppression.	tor - Supporting			
□ PN 16		requirements**			
16 bar at 49°C (232 psig at 120°F)	Coolina:	Fan-cooled, sur			
7 bar at 150°C (100 psig at 300°F)	Ambient temperature:				
□ PN 25	, , , , , , , , , , , , , , , , , , , ,	above sea level			
25 bar at 65°C (362 psig at 149°F)			3300 ft)		
21 bar at 150°C (304 psig at 300°F)	Analog ı/o:	Two inputs, one			
		can be configur			
FLOW READOUT ACCURACY		or current			
The Design Envelope model selected will pro	Digital ı/o:	Two inputs, two			
on the controls local keypad & digitally for th		puts can be con			
readout will be factory tested to ensure ±5%	Relay outputs:	Two programm			

Stationary seat: Silicone carbide

MECHANICAL SEAL DESIGN DATA

Rotating hardware: Stainless steel

Secondary seal: EPDM **Spring:** Stainless steel

Seal type: 2A

M MOTOR AND CONTROL DATA

kW: 1.5 **RPM:** 3000 Motor enclosure: TEFC Volts: Phase: 3 Efficiency: IE5 **Orientation:** □ L5 (default) □ L6 **Protocol (standard):** □ BACnetTM MS/TP ☐ BACnet™ TCP/IP ☐ Modbus RTU Control enclosure: ☐ Indoor - IP 55

EMI/RFI control: Integrated filter designed to

meet EN61800-3

armonic suppression: Equivalent: 5% Ac line reac-

tor - Supporting IEEE 519-1992

Cooling: Fan-cooled, surface cooling

mbient temperature: -10°C to +45°C up to 1000 meters

above sea level (+14°F to +113°F,

Analog I/o: Two inputs, one output. Output

can be configured for voltage

Digital I/o: Two inputs, two outputs. Out-

puts can be configured as inputs

Relay outputs: Two programmable

Communication port: 1-RS485

 $^{\star\star}\,$ If supplied with the system electrical details, Armstrong will run a computer simulation of the system wide harmonics. If system harmonic levels are exceeded Armstrong can also recommend additional harmonic mitigation and the costs for such mitigation.

FLUID TYPE	ALL GLYCOLS > 30% WT CONC		ALL OTHER NON-POTABLE FLUIDS		POTABLE (DRINKING) WATER	
Temperature	up to 93°C / 200°F	over 93°C / 200°F	up to 93°C / 200°F	over 93°C / 200°F	up to 93°C / 200°F	over 93°C / 200°F
Rotating face	Silicone carbide		Resin bonded carbon	Antimony loaded carbon	Resin bonded carbon	
Seat elastomer	EPDM (L-cup)	EPDM (O-ring)	EPDM (L-cup)	EPDM (0-ring)	EPDM (L-cup)	EPDM (0-ring)
Material code	SCsc L EPSS 2A	SCsc o epss 2A	C-SC L EPSS 2A	ACsc o epss 2A	C-SC L EPSS 2A	C-SC O EPSS 2A

2

OPTIONS

SENSORLESS BUNDLE (STANDARD)

Operation of pump without a remote sensor. Includes:

- Sensorless control
- Flow readout
- Constant flow
- Constant pressure

Minimum system pressure to be maintained \mathbf{m} (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

☐ PARALLEL SENSORLESS

Operation of multiple pumps without a remote sensor

Minimum system pressure to be maintained m (ft)

* If minimum maintained system pressure is not known: Default to 40% of design head

☐ ENERGY PERFORMANCE BUNDLE

Provides energy savings on oversized systems by adjusting pump parameters to on-site conditions. Includes:

- Auto-flow balancing Automatically determines control curve between design flow at on-site system head, and minimum (zero-head) flow for energy savings
- Maximum flow control Limits flow rate to pre-set maximum for potential energy savings

Maximum flow rate L/s (gpm)

\square PROTECTION BUNDLE

Protects other flow sensitive equipment by setting limits of pump operation. Includes:

- Minimum flow control Attempts to maintain flow rate to pre-set minimum to protect equipment in system
- Bypass valve control Actuates a bypass valve to protect flow sensitive equipment if pre-set minimum flow rate is reached

Minimum flow rate L/s (gpm)

DUAL SEASON SETUP

Pre-sets heating and cooling parameters for pumps in 2-pipe systems

Cooling

Duty point	L/s (gpm) at m (ft)
, ,	essure to be maintained (ft)
Heating	
Duty point	L/s (gpm) at m (ft)
Minimum system pre	essure to be maintained m (ft)

OPTIONAL SERVICES

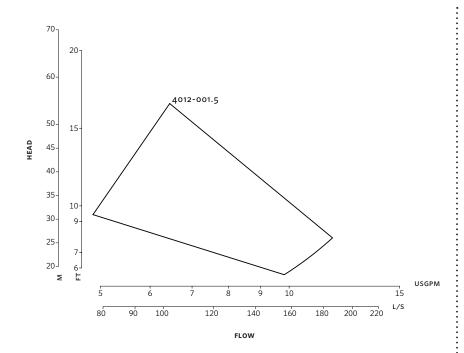
ON-SITE PUMP COMMISSIONING

PUMP MANAGER

Online service for sustained pump performance and enhanced reliability.

Available in 3 or 5 year terms

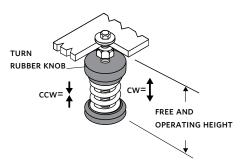
- * Requires an internet connection to be provided by building
- * Includes an extended warranty for parts and labour (wearable parts excluded)

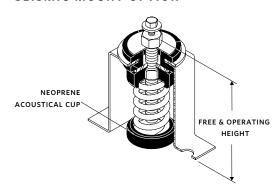

^{*}Only available if sensorless bundle is enabled

^{*}Available in single pump operation only

^{*}Only available if sensorless bundle is enabled

^{*}Available in single pump operation only


3


Performance curves are for reference only.

Confirm current performance data with Armstrong ADEPT Quote or ADEPT Select selection software.

STANDARD

SEISMIC MOUNT OPTION

All springs have additional travel to solid equal to 50% of the rated deflection.

DIMENSION DATA

STANDARD

Size: 2×1.5×5

κW: 1.5

RPM: 3000

HA: 262 (10.32)

HD: 222 (8.75)

HI: 464 (18.27)

HV: 208 (8.18)

x: 178 (7.00)

y: 102 (4.00)

Free & operating height:

95 (3.75)

Weight: 32 (70.5)

SPRING DATA

Rated Capacity per spring kgs (lbs): 25.0 (54)

mm (inch):

Rated Deflection

30 (1.20)

Mount Constant

kg/mm (lbs/in): 0.8 (45)

SEISMIC MOUNT OPTION

2E: 146 (5.75)

F: 102 (4.00)

G: 152 (6.00)

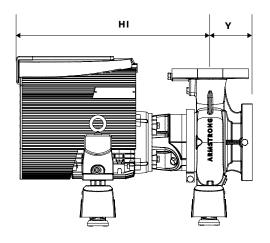
H: 12 (0.50)

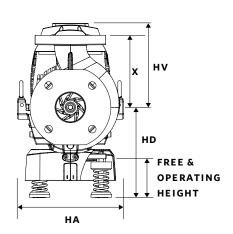
HA: 262 (10.32)

HD: 254 (10.00)

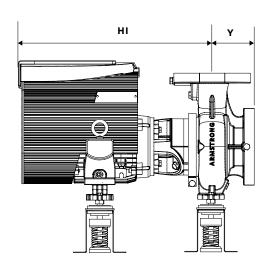
N: 166 (6.54)

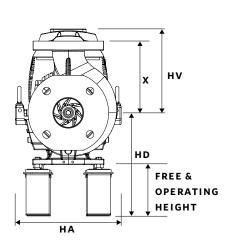
Free & operating 127 (5.00)


height:


Max. horizontal 6.7 static G rating:

- Dimensions mm (inch)
- Weight kg (lbs)
- Tolerance of ±3 mm (±0.125") should be used
- For exact installation, data please write factory for certified dimensions


4


STANDARD

SEISMIC MOUNT OPTION

TORONTO

+1 416 755 2291

BUFFALO

+1 716 693 8813

BIRMINGHAM

+44 (0) 8444 145 145

MANCHESTER

+44 (0) 8444 145 145

BANGALORE

+91 (0) 80 4906 3555

SHANGHAI

+86 (0) 21 5237 0909

SÃO PAULO

+55 11 4785 1330

LYON

+33 (0) 420 102 625

DUBAI

+971 4 887 6775

MANNHEIM

+49 (0) 621 3999 9858

ARMSTRONG FLUID TECHNOLOGY ESTABLISHED 1934

H DIA

8 HOLES

2E

ARMSTRONGFLUIDTECHNOLOGY.COM