Contents

1 How to Read this Design Guide 3
Copyright, limitation of liability and revision rights 3
Approvals 4
Symbols 4
Abbreviations 5
Definitions 5
2 Introduction to IVS 102 Drive 11
Safety 11
CE labelling 13
Aggressive Environments 14
Vibration and shock 15
Safe Stop 15
Control Structures 32
General aspects of EMC 39
Galvanic isolation (PELV) 43
PELV - Protective Extra Low Voltage 43
Earth Leakage Current 44
Brake Function 45
Extreme Running Conditions 47
3 IVS 102 Drive Selection 51
Options and Accessories 51
Frame Size F Panel Options 59
4 How to Order 65
Ordering Numbers 69
5 How to Install 79
Mechanical dimensions 81
Lifting 86
Electrical Installation 88
Electrical installation and control cables 89
Final Set-Up and Test 105
Additional Connections 107
Installation of misc. connections 111
Safety 113
EMC-correct Installation 114
Residual Current Device 117
6 Application Examples 119
Start/Stop 119
Pulse Start/Stop 119
Potentiometer Reference 120
Automatic Motor Adaptation (AMA) 120
Smart Logic Control 120
Smart Logic Control Programming 121
SLC Application Example 121
BASIC Cascade Controller 123
Pump Staging with Lead Pump Alternation 124
System Status and Operation 124
Fixed Variable Speed Pump Wiring Diagram 125
Lead Pump Alternation Wiring Diagram 125
Cascade Controller Wiring Diagram 126
Start/Stop conditions 126
7 RS-485 Installation and Set-up 129
RS-485 Installation and Set-up 129
FC Protocol Overview 131
Network Configuration 131
FC Protocol Message Framing Structure 132
Examples 137
Modbus RTU Overview 138
Modbus RTU Message Framing Structure 139
How to Access Parameters 143
Examples 144
Danfoss FC Control Profile 150
8 General Specifications and Troubleshooting 155
Mains Supply Tables 155
General Specifications 169
Efficiency 173
Acoustic Noise 174
Peak Voltage on Motor 174
Special Conditions 179
Troubleshooting 181
Alarms and Warnings 181
Alarm Words 185
Warning Words 186
Extended Status Words 187
Fault Messages 188
Index 194

1 How to Read this Design Guide

IVS 102 Drive FC 100 Series
 Software version: 3.2.x

This guide can be used with all IVS 102 Drive frequency converters with software version 3.2.x. The actual software version number can be read from par. 15-43 Software Version.

1.1.1 Copyright, limitation of liability and revision rights

This publication contains information proprietary to Danfoss. By accepting and using this manual the user agrees that the information contained herein will be used solely for operating equipment from Danfoss or equipment from other vendors provided that such equipment is intended for communication with Danfoss equipment over a serial communication link. This publication is protected under the Copyright laws of Denmark and most other countries.

Danfoss does not warrant that a software program produced according to the guidelines provided in this manual will function properly in every physical, hardware or software environment.

Although Danfoss has tested and reviewed the documentation within this manual, Danfoss makes no warranty or representation, neither expressed nor implied, with respect to this documentation, including its quality, performance, or fitness for a particular purpose.

In no event shall Danfoss be liable for direct, indirect, special, incidental, or consequential damages arising out of the use, or the inability to use information contained in this manual, even if advised of the possibility of such damages. In particular, Danfoss is not responsible for any costs, including but not limited to those incurred as a result of lost profits or revenue, loss or damage of equipment, loss of computer programs, loss of data, the costs to substitute these, or any claims by third parties.

Danfoss reserves the right to revise this publication at any time and to make changes to its contents without prior notice or any obligation to notify former or present users of such revisions or changes.

1.1.2 Available literature for IVS 102 Drive

Operating Instructions MG.11.Ax.yy provide the necessary information for getting the frequency converter up and running. Operating Instructions IVS 102 Drive High Power, MG.11.Fx.yy

- Design Guide MG.11.Bx.yy entails all technical information about the frequency converter and customer design and applications.
- Programming Guide MG.11.Cx.yy provides information on how to programme and includes complete parameter descriptions.
- Mounting Instruction, Analog I/O Option MCB109, MI.38.Bx.yy
- Application Note, Temperature Derating Guide, MN.11.Ax.yy
- PC-based Configuration Tool MCT 10, MG.10.Ax.yy enables the user to configure the frequency converter from a Windows ${ }^{\text {TM }}$ based PC environment.
- Danfoss IVS 102 Energy Box software at www.danfoss.com/BusinessAreas/DrivesSolutions then choose PC Software Download
- IVS 102 Drive Drive Applications, MG.11.Tx.yy
- Operating Instructions IVS 102 Drive Profibus, MG.33.Cx.yy.
- Operating Instructions IVS 102 Drive Device Net, MG.33.Dx.yy
- Operating Instructions IVS 102 Drive BACnet, MG.11.Dx.yy
- Operating Instructions IVS 102 Drive LonWorks, MG.11.Ex.yy
- Operating Instructions IVS 102 Drive Metasys, MG.11.Gx.yy
- Operating Instructions IVS 102 Drive FLN, MG.11.Zx.yy
- Output Filter Design Guide, MG.90.Nx.yy
- Brake Resistor Design Guide, MG.90.Ox.yy
$\mathrm{x}=$ Revision number
$y y=$ Language code

Danfoss technical literature is available in print from your local Danfoss Sales Office or online at:
www.danfoss.com/BusinessAreas/DrivesSolutions/Documentations/Technical+Documentation.htm

1.1.3 Approvals

1.1.4 Symbols

Symbols used in this guide.
\square
\square

1.1.5 Abbreviations

Alternating current	AC
American wire gauge	AWG
Ampere/AMP	A
Automatic Motor Adaptation	AMA
Current limit	ILim
Degrees Celsius	${ }^{\circ} \mathrm{C}$
Direct current	DC
Drive Dependent	D-TYPE
Electro Magnetic Compatibility	EMC
Electronic Thermal Relay	ETR
Frequency Converter	FC
Gram	g
Hertz	Hz
Kilohertz	kHz
Local Control Panel	LCP
Meter	m
Millihenry Inductance	mH
Milliampere	mA
Millisecond	ms
Minute	min
Motion Control Tool	MCT
Nanofarad	nF
Newton Meters	Nm
Nominal motor current	Im,N
Nominal motor frequency	$\mathrm{f}_{\mathrm{M}, \mathrm{N}}$
Nominal motor power	$\mathrm{P}_{\mathrm{M}, \mathrm{N}}$
Nominal motor voltage	$U_{M, N}$
Parameter	par.
Protective Extra Low Voltage	PELV
Printed Circuit Board	PCB
Rated Inverter Output Current	IINV
Revolutions Per Minute	RPM
Regenerative terminals	Regen
Second	S
Synchronous Motor Speed	n_{s}
Torque limit	TLIM
Volts	V
The maximum output current	IvLT,MAX
The rated output current supplied by the frequency converter	IvLt, N

1.1.6 Definitions

Drive:

IVLT,MAX
The maximum output current.

IvLT,N
The rated output current supplied by the frequency converter.
$\underline{U V L T}, ~ M A X$
The maximum output voltage.

Input:

| Control command |
| :--- | :--- | :--- | :--- |
| You can start and stop the connected motor by means of LCP and the |
| digital inputs. | | Group 1 | Reset, Coasting stop, Reset and Coasting stop, Quick-stop, DC
 braking, Stop and the "Off" key. |
| :--- | :--- |
| Functions are divided into two groups.
 Functions in group 1 have higher priority than functions in group 2. | Start, Pulse start, Reversing, Start reversing, Jog and Freeze
 output |

[^0](s)

ПVLT
The efficiency of the frequency converter is defined as the ratio between the power output and the power input.

Start-disable command

A stop command belonging to the group 1 control commands - see this group.

Stop command

See Control commands.

References:

Analog Reference

A signal transmitted to the analog inputs 53 or 54, can be voltage or current.

Bus Reference

A signal transmitted to the serial communication port (FC port).

Preset Reference

A defined preset reference to be set from -100% to $+100 \%$ of the reference range. Selection of eight preset references via the digital terminals.

Pulse Reference

A pulse frequency signal transmitted to the digital inputs (terminal 29 or 33).

Refmax

Determines the relationship between the reference input at 100% full scale value (typically $10 \mathrm{~V}, 20 \mathrm{~mA}$) and the resulting reference. The maximum reference value set in par. 3-03 Maximum Reference.

Ref $_{\text {min }}$

Determines the relationship between the reference input at 0% value (typically $0 \mathrm{~V}, 0 \mathrm{~mA}, 4 \mathrm{~mA}$) and the resulting reference. The minimum reference value set in par. 3-02 Minimum Reference

Miscellaneous:

Analog Inputs

The analog inputs are used for controlling various functions of the frequency converter.
There are two types of analog inputs:
Current input, 0-20 mA and 4-20 mA
Voltage input, 0-10 V DC.

Analog Outputs

The analog outputs can supply a signal of 0-20 mA, 4-20 mA, or a digital signal.

Automatic Motor Adaptation, AMA
AMA algorithm determines the electrical parameters for the connected motor at standstill.

Brake Resistor

The brake resistor is a module capable of absorbing the brake power generated in regenerative braking. This regenerative braking power increases the intermediate circuit voltage and a brake chopper ensures that the power is transmitted to the brake resistor.

CT Characteristics

Constant torque characteristics used for screw and scroll refrigeration compressors.

Digital Inputs
The digital inputs can be used for controlling various functions of the frequency converter.

Digital Outputs

The frequency converter features two Solid State outputs that can supply a 24 V DC (max. 40 mA) signal.

DSP
Digital Signal Processor.

Relay Outputs:

The frequency converter features two programmable Relay Outputs.

ETR
Electronic Thermal Relay is a thermal load calculation based on present load and time. Its purpose is to estimate the motor temperature.

GLCP:
Graphical Local Control Panel (LCP102)

Initialising
If initialising is carried out (par. 14-22 Operation Mode), the programmable parameters of the frequency converter return to their default settings.

Intermittent Duty Cycle

An intermittent duty rating refers to a sequence of duty cycles. Each cycle consists of an on-load and an off-load period. The operation can be either periodic duty or none-periodic duty.

LCP

The Local Control Panel (LCP)keypad makes up a complete interface for control and programming of the frequency converter. The control panelkeypad is detachable and can be installed up to 3 metres from the frequency converter, i.e. in a front panel by means of the installation kit option. The Local Control Panel is available in two versions:

- Numerical LCP101 (NLCP)
- Graphical LCP102 (GLCP)

Isb

Least significant bit.

MCM
Short for Mille Circular Mil, an American measuring unit for cable cross-section. 1 MCM $\equiv 0.5067 \mathrm{~mm}^{2}$.

msb

Most significant bit.

NLCP

Numerical Local Control Panel LCP101

On-line/Off-line Parameters

Changes to on-line parameters are activated immediately after the data value is changed. Changes to off-line parameters are not activated until you enter [OK] on the LCP.

PID Controller
The PID controller maintains the desired speed, pressure, temperature, etc. by adjusting the output frequency to match the varying load.

RCD

Residual Current Device.

Set-up

You can save parameter settings in four Set-ups. Change between the four parameter Set-ups and edit one Set-up, while another Set-up is active.

SFAVM

Switching pattern called Stator Flux oriented \underline{A} synchronous \underline{V} ector \underline{M} odulation (par. 14-00 Switching Pattern).

Slip Compensation

The frequency converter compensates for the motor slip by giving the frequency a supplement that follows the measured motor load keeping the motor speed almost constant.

Smart Logic Control (SLC)

The SLC is a sequence of user defined actions executed when the associated user defined events are evaluated as true by the SLC.

Thermistor:

A temperature-dependent resistor placed where the temperature is to be monitored (frequency converter or motor).

Trip
A state entered in fault situations, e.g. if the frequency converter is subject to an over-temperature or when the frequency converter is protecting the motor, process or mechanism. Restart is prevented until the cause of the fault has disappeared and the trip state is cancelled by activating reset or, in some cases, by being programmed to reset automatically. Trip may not be used for personal safety.

Trip Locked

A state entered in fault situations when the frequency converter is protecting itself and requiring physical intervention, e.g. if the frequency converter is subject to a short circuit on the output. A locked trip can only be cancelled by cutting off mains, removing the cause of the fault, and reconnecting the frequency converter. Restart is prevented until the trip state is cancelled by activating reset or, in some cases, by being programmed to reset automatically. Trip locked may not be used for personal safety.

VT Characteristics
Variable torque characteristics used for pumps and fans.

VVCplus

If compared with standard voltage/frequency ratio control, Voltage Vector Control ($\mathrm{VVO}{ }^{\text {Plus }}$) improves the dynamics and the stability, both when the speed reference is changed and in relation to the load torque.
60° AVM
Switching pattern called 60° Asynchronous Vector Modulation (See par. 14-00 Switching Pattern).

1.1.7 Power Factor

The power factor is the relation between I_{1} and $\mathrm{I}_{\text {RMs }}$.

The power factor for 3-phase control:

$$
\begin{aligned}
& \text { Power factor }=\frac{\sqrt{3} \times U \times I_{1} \times \operatorname{COS} \varphi}{\sqrt{3} \times U \times I_{R M S}} \\
& =\frac{I_{1} \times \cos \varphi 1}{I_{R M S}}=\frac{I_{1}}{I_{R M S}} \text { since } \cos \varphi 1=1
\end{aligned}
$$

The lower the power factor, the higher the $I_{\text {rMs }}$ for the same kW performance.

The power factor indicates to which extent the frequency converter imposes a load on the mains supply.

IVS 102 Drive Design Guide

$$
I_{R M S}=\sqrt{I_{1}^{2}+\prime_{5}^{2}+I_{7}^{2}+\ldots+I_{n}^{2}}
$$

1
In addition, a high power factor indicates that the different harmonic currents are low.
The frequency converters' built-in DC coils produce a high power factor, which minimizes the imposed load on the mains supply.

2 Introduction to IVS 102 Drive

2.1 Safety

2.1.1 Safety Note

The voltage of the frequency converter is dangerous whenever connected to mains. Incorrect installation of the motor, frequency converter or fieldbus may cause death, serious personal injury or damage to the equipment. Consequently, the instructions in this manual, as well as national and local rules and safety regulations, must be complied with.

Safety Regulations

1. The frequency converter must be disconnected from mains if repair work is to be carried out. Check that the mains supply has been disconnected and that the necessary time has passed before removing motor and mains plugs.
2. The [STOP/RESET] key on the LCP of the frequency converter does not disconnect the equipment from mains and is thus not to be used as a safety switch.
3. Correct protective earthing of the equipment must be established, the user must be protected against supply voltage, and the motor must be protected against overload in accordance with applicable national and local regulations.
4. The earth leakage currents are higher than 3.5 mA .
5. Protection against motor overload is set by par. 1-90 Motor Thermal Protection. If this function is desired, set par. 1-90 Motor Thermal Protection to data value [ETR trip] (default value) or data value [ETR warning]. Note: The function is initialized at $1.16 \times$ rated motor current and rated motor frequency. For the North American market: The ETR functions provide class 20 motor overload protection in accordance with NEC.
6. Do not remove the plugs for the motor and mains supply while the frequency converter is connected to mains. Check that the mains supply has been disconnected and that the necessary time has passed before removing motor and mains plugs.
7. Please note that the frequency converter has more voltage inputs than L1, L2 and L3, when load sharing (linking of DC intermediate circuit) and external 24 V DC have been installed. Check that all voltage inputs have been disconnected and that the necessary time has passed before commencing repair work.

Installation at high altitudes

Installation at high altitude:
380-500 V, enclosure A, B and C: At altitudes above 2 km , please contact Danfoss regarding PELV.
380-500 V, enclosure D, E and F: At altitudes above 3 km , please contact Danfoss regarding PELV.
525-690 V: At altitudes above 2 km , please contact Danfoss regarding PELV.

Warning against Unintended Start

1. The motor can be brought to a stop by means of digital commands, bus commands, references or a local stop, while the frequency converter is connected to mains. If personal safety considerations make it necessary to ensure that no unintended start occurs, these stop functions are not sufficient.
2. While parameters are being changed, the motor may start. Consequently, the stop key [STOP/RESET] must always be activated; following which data can be modified.
3. A motor that has been stopped may start if faults occur in the electronics of the frequency converter, or if a temporary overload or a fault in the supply mains or the motor connection ceases.

Consequently, disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to follow recommendations could result in death or serious injury.
Warning:

Also make sure that other voltage inputs have been disconnected, such as external 24 V DC, load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic back up. Refer to the Operating Instructions for further safety guidelines.

The frequency converter DC link capacitors remain charged after power has been disconnected. To avoid an electrical shock hazard, disconnect the frequency converter from the mains before carrying out maintenance. Wait at least as follows before doing service on the frequency converter:

Voltage (V)	Min. Waiting Time (Minutes)				
	4	15	20	30	40
200-240	1.1 - 3.7 kW	5.5-45 kW			
380-480	$1.1-7.5$ kW	11 -90 kW	110-250 kW		315-1000 kW
525-600	$1.1-7.5$ kW	$11-90 \mathrm{~kW}$			
525-690		11 - 90 kW	45-400 kW	450-1400 kW	
Be aware that there may be high voltage on the DC link even when the LEDs are turned off.					

2.1.2 Disposal Instruction

[^1]
2.2 CE labelling

2.2.1 CE Conformity and Labelling

What is CE Conformity and Labelling?

The purpose of CE labelling is to avoid technical trade obstacles within EFTA and the EU. The EU has introduced the CE label as a simple way of showing whether a product complies with the relevant EU directives. The CE label says nothing about the specifications or quality of the product. Frequency converters are regulated by three EU directives:
The machinery directive (98/37/EEC)
All machines with critical moving parts are covered by the machinery directive of January 1,1995 . Since a frequency converter is largely electrical, it does not fall under the machinery directive. However, if a frequency converter is supplied for use in a machine, we provide information on safety aspects relating to the frequency converter. We do this by means of a manufacturer's declaration.
The low-voltage directive ($\mathbf{7 3} / 23 / E E C$)
Frequency converters must be CE labelled in accordance with the low-voltage directive of January 1,1997. The directive applies to all electrical equipment and appliances used in the 50-1000 V AC and the 75-1500 V DC voltage ranges. Danfoss CE-labels in accordance with the directive and issues a declaration of conformity upon request.
The EMC directive (89/336/EEC)
EMC is short for electromagnetic compatibility. The presence of electromagnetic compatibility means that the mutual interference between different components/appliances does not affect the way the appliances work.
The EMC directive came into effect January 1, 1996. Danfoss CE-labels in accordance with the directive and issues a declaration of conformity upon request. To carry out EMC-correct installation, see the instructions in this Design Guide. In addition, we specify which standards our products comply with. We offer the filters presented in the specifications and provide other types of assistance to ensure the optimum EMC result.

The frequency converter is most often used by professionals of the trade as a complex component forming part of a larger appliance, system or installation. It must be noted that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer.

2.2.2 What Is Covered

The EU "Guidelines on the Application of Council Directive 89/336/EEC" outline three typical situations of using a frequency converter. See below for EMC coverage and CE labelling.

1. The frequency converter is sold directly to the end-consumer. The frequency converter is for example sold to a DIY market. The end-consumer is a layman. He installs the frequency converter himself for use with a hobby machine, a kitchen appliance, etc. For such applications, the frequency converter must be CE labelled in accordance with the EMC directive.
2. The frequency converter is sold for installation in a plant. The plant is built up by professionals of the trade. It could be a production plant or a heating/ventilation plant designed and installed by professionals of the trade. Neither the frequency converter nor the finished plant has to be CE labelled under the EMC directive. However, the unit must comply with the basic EMC requirements of the directive. This is ensured by using components, appliances, and systems that are CE labelled under the EMC directive.
3. The frequency converter is sold as part of a complete system. The system is being marketed as complete and could e.g. be an air-conditioning system. The complete system must be CE labelled in accordance with the EMC directive. The manufacturer can ensure CE labelling under the EMC directive either by using CE labelled components or by testing the EMC of the system. If he chooses to use only CE labelled components, he does not have to test the entire system.

2.2.3 Danfoss Frequency Converter and CE Labelling

CE labelling is a positive feature when used for its original purpose, i.e. to facilitate trade within the EU and EFTA.

However, CE labelling may cover many different specifications. Thus, you have to check what a given CE label specifically covers.

The covered specifications can be very different and a CE label may therefore give the installer a false feeling of security when using a frequency converter as a component in a system or an appliance.

Danfoss CE labels the frequency converters in accordance with the low-voltage directive. This means that if the frequency converter is installed correctly, we guarantee compliance with the low-voltage directive. Danfoss issuesWe issue a declaration of conformity that confirms our CE labelling in accordance with the low-voltage directive.

The CE label also applies to the EMC directive provided that the instructions for EMC-correct installation and filtering are followed. On this basis, a declaration of conformity in accordance with the EMC directive is issued.

The Design Guide offers detailed instructions for installation to ensure EMC-correct installation. Furthermore, Danfoss specifies which our different products comply with.

Danfoss provides other types of assistance that can help you obtain the best EMC result.

2.2.4 Compliance with EMC Directive 89/336/EEC

As mentioned, the frequency converter is mostly used by professionals of the trade as a complex component forming part of a larger appliance, system, or installation. It must be noted that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer. As an aid to the installer, Danfoss has prepared EMC installation guidelines for the Power Drive system. The standards and test levels stated for Power Drive systems are complied with, provided that the EMC-correct instructions for installation are followed, see the section EMC Immunity.

The frequency converter has been designed to meet the IEC/EN 60068-2-3 standard, EN 50178 pkt. 9.4.2.2 at $50^{\circ} \mathrm{C}$.

2.4.1 Aggressive Environments

A frequency converter contains a large number of mechanical and electronic components. All are to some extent vulnerable to environmental effects.

The frequency converter should not be installed in environments with airborne liquids, particles, or gases capable of affecting and damaging the electronic components. Failure to take the necessary protective measures increases the risk of stoppages, thus reducing the life of the frequency converter.

Liquids can be carried through the air and condense in the frequency converter and may cause corrosion of components and metal parts. Steam, oil, and salt water may cause corrosion of components and metal parts. In such environments, use equipment with enclosure rating IP 54/55. As an extra protection, coated printed circuit boards can be ordered as an option.

Airborne Particles such as dust may cause mechanical, electrical, or thermal failure in the frequency converter. A typical indicator of excessive levels of airborne particles is dust particles around the frequency converter fan. In very dusty environments, use equipment with enclosure rating IP 54/55 or a cabinet for IP 00/IP 20/TYPE 1 equipment.

In environments with high temperatures and humidity, corrosive gases such as sulphur, nitrogen, and chlorine compounds will cause chemical processes on the frequency converter components.

Such chemical reactions will rapidly affect and damage the electronic components. In such environments, mount the equipment in a cabinet with fresh air ventilation, keeping aggressive gases away from the frequency converter.
An extra protection in such areas is a coating of the printed circuit boards, which can be ordered as an option.
NB!
Mounting frequency converters in aggressive environments increases the risk of stoppages and considerably reduces the life of the
converter

Before installing the frequency converter, check the ambient air for liquids, particles, and gases. This is done by observing existing installations in this environment. Typical indicators of harmful airborne liquids are water or oil on metal parts, or corrosion of metal parts.

Excessive dust particle levels are often found on installation cabinets and existing electrical installations. One indicator of aggressive airborne gases is blackening of copper rails and cable ends on existing installations.

D and E enclosures have a stainless steel back-channel option to provide additional protection in aggressive environments. Proper ventilation is still required for the internal components of the drive. Contact Danfoss for additional information.

2.5 Vibration and shock

The frequency converter has been tested according to the procedure based on the shown standards:

The frequency converter complies with requirements that exist for units mounted on the walls and floors of production premises, as well as in panels bolted to walls or floors.

```
IEC/EN 60068-2-6:
Vibration (sinusoidal) - 1970
IEC/EN 60068-2-64:

\subsection*{2.6 Safe Stop}

\subsection*{2.6.1 Electrical terminals}

The frequency converter can perform the safety function Safe Torque Off(As defined by draft CD IEC 61800-5-2) or Stop Category 0 (as defined in EN 60204-1).
It is designed and approved suitable for the requirements of Safety Category 3 in EN 954-1. This functionality is called Safe Stop. Prior to integration and use of Safe Stop in an installation, a thorough risk analysis on the installation must be carried out in order to determine whether the Safe Stop functionality and safety category are appropriate and sufficient.

In order to install and use the Safe Stop function in accordance with the requirements of Safety Category 3 in EN 954-1, the related information and instructions of the relevant Design Guide must be followed! The information and instructions of the Operating Instructions are not sufficient for a correct and safe use of the Safe Stop functionality!


Illustration 2.1: Diagram showing all electrical terminals. (Terminal 37 present for units with Safe Stop Function only.)

Prüf- und Zertifizierungsstelle im BG-PRÜFZERT

\section*{Translation}

In any case, the German
original shall prevail.
Name and address of the
holder of the certificate:
(customer)
Name and address of the
manufacturer:

Ref. of customer:

The type tested complies with the provisions laid down in the directive 98/37/EC (Machinery).

Further conditions are laid down in the Rules of Procedure for Testing and Certification of April 2004.



\subsection*{2.6.2 Safe Stop Installation}

To carry out an installation of a Category 0 Stop (EN60204) in conformity with Safety Category 3 (EN954-1), follow these instructions:
1. The bridge (jumper) between Terminal 37 and 24 V DC must be removed. Cutting or breaking the jumper is not sufficient. Remove it entirely to avoid short-circuiting. See jumper on illustration.
2. Connect terminal 37 to 24 V DC by a short-circuit protected cable. The 24 V DC voltage supply must be interruptible by an EN954-1 Category 3 circuit interrupt device. If the interrupt device and the frequency converter are placed in the same installation panel, you can use an unscreened cable instead of a screened one.


Illustration 2.2: Bridge jumper between terminal 37 and 24 VDC

The illustration below shows a Stopping Category 0 (EN 60204-1) with safety Category 3 (EN 954-1). The circuit interrupt is caused by an opening door contact. The illustration also shows how to connect a non-safety related hardware coast.


Illustration 2.3: Illustration of the essential aspects of an installation to achieve a Stopping Category 0 (EN 60204-1) with safety Category 3 (EN 954-1).

\subsection*{2.7 Advantages}

\subsection*{2.7.1 Why use a Frequency Converter for Controlling Fans and Pumps?}

A frequency converter takes advantage of the fact that centrifugal fans and pumps follow the laws of proportionality for such fans and pumps. For further information see the text The Laws of Proportionality, page 19.

\subsection*{2.7.2 The Clear Advantage - Energy Savings}

The very clear advantage of using a frequency converter for controlling the speed of fans or pumps lies in the electricity savings.
When comparing with alternative control systems and technologies, a frequency converter is the optimum energy control system for controlling fan and pump systems.


Illustration 2.4: The graph is showing fan curves ( \(A, B\) and C) for reduced fan volumes.


Illustration 2.5: When using a frequency converter to reduce fan capacity to 60\% - more than \(50 \%\) energy savings may be obtained in typical applications.

\subsection*{2.7.3 Example of Energy Savings}

As can be seen from the figure (the laws of proportionality), the flow is controlled by changing the RPM. By reducing the speed only \(20 \%\) from the rated speed, the flow is also reduced by \(20 \%\). This is because the flow is directly proportional to the RPM. The consumption of electricity, however, is reduced by \(50 \%\).
If the system in question only needs to be able to supply a flow that corresponds to \(100 \%\) a few days in a year, while the average is below \(80 \%\) of the rated flow for the remainder of the year, the amount of energy saved is even more than \(50 \%\).
\begin{tabular}{|ll|}
\hline The laws of proportionality & \\
The figure below describes the dependence of flow, pressure and power consumption on RPM. \\
\begin{tabular}{ll} 
Q = Flow & \(\mathrm{P}=\) Power \\
\(\mathrm{Q}_{1}=\) Rated flow & \(\mathrm{P}_{1}=\) Rated power \\
\(\mathrm{Q}_{2}=\) Reduced flow & \(\mathrm{P}_{2}=\) Reduced power \\
& \\
\(H=\) Pressure & \(\mathrm{n}=\) Speed regulation \\
\(\mathrm{H}_{1}=\) Rated pressure & \(\mathrm{n}_{1}=\) Rated speed \\
\(\mathrm{H}_{2}=\) Reduced pressure & \(\mathrm{n}_{2}=\) Reduced speed \\
\hline
\end{tabular} \\
\hline
\end{tabular}


Flow : \(\frac{Q_{1}}{Q_{2}}=\frac{n_{1}}{n_{2}}\)
Pressure : \(\frac{H_{1}}{H_{2}}=\left(\frac{n_{1}}{n_{2}}\right)^{2}\)

Power: \(\frac{P_{1}}{P_{2}}=\left(\frac{n_{1}}{n_{2}}\right)^{3}\)

\subsection*{2.7.4 Comparison of Energy Savings}

The Danfoss frequency converter solution offers major savings compared with traditional energy saving solutions. This is because the frequency converter is able to control fan speed according to thermal load on the system and the fact that the frequency converter has a build-in facility that enables the frequency converter to function as a Building Management System, BMS.

The graph (Illustration 2.7) illustrates typical energy savings obtainable with 3 well-known solutions when fan volume is reduced to i.e. \(60 \%\). As the graph shows, more than \(50 \%\) energy savings can be achieved in typical applications.



Illustration 2.7: Discharge dampers reduce power consumption somewhat. Inlet Guide Vans offer a \(40 \%\) reduction but are expensive to install. The Danfossfrequency converter solution reduces energy consumption with more than \(50 \%\) and is easy to install.

\subsection*{2.7.5 Example with Varying Flow over 1 Year}

The example below is calculated on the basis of pump characteristics obtained from a pump datasheet.
The result obtained shows energy savings in excess of \(50 \%\) at the given flow distribution over a year. The pay back period depends on the price per kWh and price of frequency converter. In this example it is less than a year when compared with valves and constant speed.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\mathrm{m}^{3} / \mathrm{h}\)} & \multicolumn{2}{|l|}{Distribution} & \multicolumn{2}{|r|}{Valve regulation} & \multicolumn{2}{|l|}{Frequency converter control} \\
\hline & \% & Hours & Power & Consumption & Power & Consumption \\
\hline & & & \(\mathrm{A}_{1}-\mathrm{B}_{1}\) & kWh & \(\mathrm{A}_{1}-\mathrm{C}_{1}\) & kWh \\
\hline 350 & 5 & 438 & 42,5 & 18.615 & 42,5 & 18.615 \\
\hline 300 & 15 & 1314 & 38,5 & 50.589 & 29,0 & 38.106 \\
\hline 250 & 20 & 1752 & 35,0 & 61.320 & 18,5 & 32.412 \\
\hline 200 & 20 & 1752 & 31,5 & 55.188 & 11,5 & 20.148 \\
\hline 150 & 20 & 1752 & 28,0 & 49.056 & 6,5 & 11.388 \\
\hline 100 & 20 & 1752 & 23,0 & 40.296 & 3,5 & 6.132 \\
\hline \(\Sigma\) & 100 & 8760 & & 275.064 & & 26.801 \\
\hline
\end{tabular}

\subsection*{2.7.6 Better Control}

If a frequency converter is used for controlling the flow or pressure of a system, improved control is obtained.
A frequency converter can vary the speed of the fan or pump, thereby obtaining variable control of flow and pressure.
Furthermore, a frequency converter can quickly adapt the speed of the fan or pump to new flow or pressure conditions in the system. Simple control of process (Flow, Level or Pressure) utilizing the built in PID control.

\subsection*{2.7.7 \(\operatorname{Cos} \varphi\) Compensation}

Generally speaking, the AKD102 have a \(\cos \varphi\) of 1 and provides power factor correction for the \(\cos \varphi\) of the motor, which means that there is no need to make allowance for the \(\cos \varphi\) of the motor when sizing the power factor correction unit.

\subsection*{2.7.8 Star/Delta Starter or Soft-starter not Required}

When larger motors are started, it is necessary in many countries to use equipment that limits the start-up current. In more traditional systems, a star/ delta starter or soft-starter is widely used. Such motor starters are not required if a frequency converter is used.

As illustrated in the figure below, a frequency converter does not consume more than rated current.

\(1=\) IVS 102 Drive
\(2=\) Star/delta starter
\(3=\) Soft-starter
\(4=\) Start directly on mains

\subsection*{2.7.9 Using a Frequency Converter Saves Money}

The example on the following page shows that a lot of equipment is not required when a frequency converter is used. It is possible to calculate the cost of installing the two different systems. In the example on the following page, the two systems can be established at roughly the same price.

\subsection*{2.7.10 Without a Frequency Converter}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{The figure shows a fan system made in the traditional way.} \\
\hline D.D.C. & \(=\) & Direct Digital Control & E.M.S. & \(=\) & Energy Management system \\
\hline V.A.V. & = & Variable Air Volume & & & \\
\hline Sensor P & = & Pressure & Sensor T & \(=\) & Temperature \\
\hline
\end{tabular}


\subsection*{2.7.11 With a Frequency Converter}


\subsection*{2.7.12 Application Examples}

The next few pages give typical examples of applications within HVAC.
If you would like to receive further information about a given application, please ask your Danfoss supplier for an information sheet that gives a full description of the application.

Variable Air Volume
Ask for The Drive to...Improving Variable Air Volume Ventilation Systems MN.60.A1.02
Constant Air Volume
Ask for The Drive to...Improving Constant Air Volume Ventilation Systems MN.60.B1.02
Cooling Tower Fan
Ask for The Drive to...Improving fan control on cooling towers MN.60.C1.02
Condenser pumps
Ask for The Drive to...Improving condenser water pumping systems MN.60.F1.02
Primary pumps
Ask for The Drive to...Improve your primary pumping in primay/secondary pumping systems MN.60.D1.02
Secondary pumps
Ask for The Drive to...Improve your secondary pumping in primay/secondary pumping systems MN.60.E1.02

\subsection*{2.7.13 Variable Air Volume}

VAV or Variable Air Volume systems, are used to control both the ventilation and temperature to satisfy the requirements of a building. Central VAV systems are considered to be the most energy efficient method to air condition buildings. By designing central systems instead of distributed systems, a greater efficiency can be obtained.
The efficiency comes from utilizing larger fans and larger chillers which have much higher efficiencies than small motors and distributed air-cooled chillers. Savings are also seen from the decreased maintenance requirements.

\subsection*{2.7.14 The IVS 102 Solution}

While dampers and IGVs work to maintain a constant pressure in the ductwork, a frequency converter solution saves much more energy and reduces the complexity of the installation. Instead of creating an artificial pressure drop or causing a decrease in fan efficiency, the frequency converter decreases the speed of the fan to provide the flow and pressure required by the system.
Centrifugal devices such as fans behave according to the centrifugal laws. This means the fans decrease the pressure and flow they produce as their speed is reduced. Their power consumption is thereby significantly reduced.
The return fan is frequently controlled to maintain a fixed difference in airflow between the supply and return. The advanced PID controller of the HVAC frequency converter can be used to eliminate the need for additional controllers.


\subsection*{2.7.15 Constant Air Volume}

CAV, or Constant Air Volume systems are central ventilation systems usually used to supply large common zones with the minimum amounts of fresh tempered air. They preceded VAV systems and therefore are found in older multi-zoned commercial buildings as well. These systems preheat amounts of fresh air utilizing Air Handling Units (AHUs) with a heating coil, and many are also used to air condition buildings and have a cooling coil. Fan coil units are frequently used to assist in the heating and cooling requirements in the individual zones.

\subsection*{2.7.16 The IVS 102 Solution}

With a frequency converter, significant energy savings can be obtained while maintaining decent control of the building. Temperature sensors or \(\mathrm{CO}_{2}\) sensors can be used as feedback signals to frequency converters. Whether controlling temperature, air quality, or both, a CAV system can be controlled to operate based on actual building conditions. As the number of people in the controlled area decreases, the need for fresh air decreases. The \(\mathrm{CO}_{2}\) sensor detects lower levels and decreases the supply fans speed. The return fan modulates to maintain a static pressure setpoint or fixed difference between the supply and return air flows.

With temperature control, especially used in air conditioning systems, as the outside temperature varies as well as the number of people in the controlled zone changes, different cooling requirements exist. As the temperature decreases below the set-point, the supply fan can decrease its speed. The return fan modulates to maintain a static pressure set-point. By decreasing the air flow, energy used to heat or cool the fresh air is also reduced, adding further savings.
Several features of the Danfoss HVAC dedicated frequency converter can be utilized to improve the performance of your CAV system. One concern of controlling a ventilation system is poor air quality. The programmable minimum frequency can be set to maintain a minimum amount of supply air regardless of the feedback or reference signal. The frequency converter also includes a 3-zone, 3 setpoint PID controller which allows monitoring both temperature and air quality. Even if the temperature requirement is satisfied, the frequency converter will maintain enough supply air to satisfy the air quality sensor. The controller is capable of monitoring and comparing two feedback signals to control the return fan by maintaining a fixed differential air flow between the supply and return ducts as well.


\subsection*{2.7.17 Cooling Tower Fan}

Cooling Tower Fans are used to cool condenser water in water cooled chiller systems. Water cooled chillers provide the most efficient means of creating chilled water. They are as much as \(20 \%\) more efficient than air cooled chillers. Depending on climate, cooling towers are often the most energy efficient method of cooling the condenser water from chillers.
They cool the condenser water by evaporation.
The condenser water is sprayed into the cooling tower onto the cooling towers "fill" to increase its surface area. The tower fan blows air through the fill and sprayed water to aid in the evaporation. Evaporation removes energy from the water dropping its temperature. The cooled water collects in the cooling towers basin where it is pumped back into the chillers condenser and the cycle is repeated.

\subsection*{2.7.18 The IVS 102 Solution}

With a frequency converter, the cooling towers fans can be controlled to the required speed to maintain the condenser water temperature. The frequency converters can also be used to turn the fan on and off as needed.

Several features of the Danfoss HVAC dedicated frequency converter, the HVAC frequency converter can be utilized to improve the performance of your cooling tower fans application. As the cooling tower fans drop below a certain speed, the effect the fan has on cooling the water becomes small. Also, when utilizing a gear-box to frequency control the tower fan, a minimum speed of \(40-50 \%\) may be required.

The customer programmable minimum frequency setting is available to maintain this minimum frequency even as the feedback or speed reference calls for lower speeds.

Also as a standard feature, you can program the frequency converter to enter a "sleep" mode and stop the fan until a higher speed is required. Additionally, some cooling tower fans have undesireable frequencies that may cause vibrations. These frequencies can easily be avoided by programming the bypass frequency ranges in the frequency converter.


\subsection*{2.7.19 Condenser Pumps}

Condenser Water pumps are primarily used to circulate water through the condenser section of water cooled chillers and their associated cooling tower. The condenser water absorbs the heat from the chiller's condenser section and releases it into the atmosphere in the cooling tower. These systems are used to provide the most efficient means of creating chilled water, they are as much as \(20 \%\) more efficient than air cooled chillers.

\subsection*{2.7.20 The IVS 102 Solution}

Frequency converters can be added to condenser water pumps instead of balancing the pumps with a throttling valve or trimming the pump impeller.

Using a frequency converter instead of a throttling valve simply saves the energy that would have been absorbed by the valve. This can amount to savings of \(15-20 \%\) or more. Trimming the pump impeller is irreversible, thus if the conditions change and higher flow is required the impeller must be replaced.


\subsection*{2.7.21 Primary Pumps}

Primary pumps in a primary/secondary pumping system can be used to maintain a constant flow through devices that encounter operation or contro difficulties when exposed to variable flow. The primary/ secondary pumping technique decouples the "primary" production loop from the "secondary" distribution loop. This allows devices such as chillers to obtain constant design flow and operate properly while allowing the rest of the system to vary in

As the evaporator flow rate decreases in a chiller, the chilled water begins to become over-chilled. As this happens, the chiller attempts to decrease its cooling capacity. If the flow rate drops far enough, or too quickly, the chiller cannot shed its load sufficiently and the chiller's low evaporator temperature safety trips the chiller requiring a manual reset. This situation is common in large installations especially when two or more chillers in parallel are installed if primary/ secondary pumping is not utilized.

\subsection*{2.7.22 The IVS 102 Solution}

Depending on the size of the system and the size of the primary loop, the energy consumption of the primary loop can become substantial.
A frequency converter can be added to the primary system, to replace the throttling valve and/or trimming of the impellers, leading to reduced operating expenses. Two control methods are common:

The first method uses a flow meter. Because the desired flow rate is known and is constant, a flow meter installed at the discharge of each chiller, can be used to control the pump directly. Using the built-in PID controller, the frequency converter will always maintain the appropriate flow rate, even compensating for the changing resistance in the primary piping loop as chillers and their pumps are staged on and off.

The other method is local speed determination. The operator simply decreases the output frequency until the design flow rate is achieved.
Using a frequency converter to decrease the pump speed is very similar to trimming the pump impeller, except it doesn't require any labor and the pump efficiency remains higher. The balancing contractor simply decreases the speed of the pump until the proper flow rate is achieved and leaves the speed fixed. The pump will operate at this speed any time the chiller is staged on. Because the primary loop doesn't have control valves or other devices that can cause the system curve to change and the variance due to staging pumps and chillers on and off is usually small, this fixed speed will remain appropriate. In the event the flow rate needs to be increased later in the systems life, the frequency converter can simply increase the pump speed instead of requiring a new pump impeller.


\subsection*{2.7.23 Secondary Pumps}

Secondary pumps in a primary/secondary chilled water pumping system are used to distribute the chilled water to the loads from the primary production loop. The primary/secondary pumping system is used to hydronically de-couple one piping loop from another. In this case. The primary pump is used to maintain a constant flow through the chillers while allowing the secondary pumps to vary in flow, increase control and save energy.
If the primary/secondary design concept is not used and a variable volume system is designed, when the flow rate drops far enough or too quickly, the chiller cannot shed its load properly. The chiller's low evaporator temperature safety then trips the chiller requiring a manual reset. This situation is common in large installations especially when two or more chillers in parallel are installed.

\subsection*{2.7.24 The IVS 102 Solution}

While the primary-secondary system with two-way valves improves energy savings and eases system control problems, the true energy savings and control potential is realized by adding frequency converters.
With the proper sensor location, the addition of frequency converters allows the pumps to vary their speed to follow the system curve instead of the pump curve.
This results in the elimination of wasted energy and eliminates most of the over-pressurization, two-way valves can be subjected too.
As the monitored loads are reached, the two-way valves close down. This increases the differential pressure measured across the load and two-way valve. As this differential pressure starts to rise, the pump is slowed to maintain the control head also called setpoint value. This set-point value is calculated by summing the pressure drop of the load and two way valve together under design conditions.

Please note that when running multiple pumps in parallel, they must run at the same speed to maximize energy savings, either with individual dedicated drives or one frequency converter running multiple pumps in parallel.


\subsection*{2.8 Control Structures}

\subsection*{2.8.1 Control Principle}


Illustration 2.8: Control structures.

The frequency converter is a high performance unit for demanding applications. It can handle various kinds of motor control principles such as U/f special motor mode and VVC plus and can handle normal squirrel cage asynchronous motors.
Short circuit behavior on this FC depends on the 3 current transducers in the motor phases.

In par. 1-00 Configuration Mode it can be selected if open or closed loop
is to be used

\subsection*{2.8.2 Control Structure Open Loop}


Illustration 2.9: Open Loop structure.

In the configuration shown in the illustration above, par. 1-00 Configuration Mode is set to Open loop [0]. The resulting reference from the reference handling system or the local reference is received and fed through the ramp limitation and speed limitation before being sent to the motor control. The output from the motor control is then limited by the maximum frequency limit.

\subsection*{2.8.3 Local (Hand On) and Remote (Auto On) Control}

The frequency converter can be operated manually via the local control panel (LCP) or remotely via analog/digital inputs or serial bus.
If allowed in par. 0-40 [Hand on] Key on \(\angle C\), par. 0-41 [Off] Key on \(\angle C P\), par. 0-42 [Auto on] Key on \(\angle C P\), and par. 0-43 [Reset] Key on \(\angle C P\), it is possible to start and stop the frequency converter byLCP using the [Hand ON] and [Off] keys. Alarms can be reset via the [RESET] key. After pressing the [Hand ON] key, the frequency converter goes into Hand Mode and follows (as default) the Local reference set by using the LCP arrow keys up [ \(\mathbf{\Delta}\) ] and down [ \(\mathbf{v}\) ].

After pressing the [Auto On] key, the frequency converter goes into Auto mode and follows (as default) the Remote reference. In this mode, it is possible to control the frequency converter via the digital inputs and various serial interfaces (RS-485, USB, or an optional fieldbus). See more about starting, stopping, changing ramps and parameter set-ups etc. in par. group 5-1* (digital inputs) or par. group 8-5* (serial communication).

\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Hand Off \\
Auto \\
LCP Keys
\end{tabular} & \begin{tabular}{l} 
Reference Site \\
par. 3-13 Reference Site
\end{tabular} & Active Reference \\
\hline Hand & Linked to Hand / Auto & Local \\
\hline Hand -> Off & Linked to Hand / Auto & Local \\
\hline Auto & Linked to Hand / Auto & Remote \\
\hline Auto -> Off & Linked to Hand / Auto & Remote \\
\hline All keys & Local & Local \\
\hline All keys & Remote & Remote \\
\hline
\end{tabular}

The table shows under which conditions either the Local Reference or the Remote Reference is active. One of them is always active, but both can not be active at the same time.

Local reference will force the configuration mode to open loop, independent on the setting of par. 1-00 Configuration Mode.

Local Reference will be restored at power-down.

\subsection*{2.8.4 Control Structure Closed Loop}

The internal controller allows the drive to become an integral part of the controlled system. The drive receives a feedback signal from a sensor in the system. It then compares this feedback to a set-point reference value and determines the error, if any, between these two signals. It then adjusts the speed of the motor to correct this error.

For example, consider a pump application where the speed of a pump is to be controlled so that the static pressure in a pipe is constant. The desired static pressure value is supplied to the drive as the set-point reference. A static pressure sensor measures the actual static pressure in the pipe and supplies this to the drive as a feedback signal. If the feedback signal is greater than the set-point reference, the drive will slow down to reduce the pressure. In a similar way, if the pipe pressure is lower than the set-point reference, the drive will automatically speed up to increase the pressure provided by the pump.


While the default values for the drive's Closed Loop controller will often provide satisfactory performance, the control of the system can often be optimized by adjusting some of the Closed Loop controller's parameters. It is also possible to autotune the PI constants.

The figure is a block diagram of the drive's Closed Loop controller. The details of the Reference Handling block and Feedback Handling block are described in their respective sections below.

\subsection*{2.8.5 Feedback Handling}

A block diagram of how the drive processes the feedback signal is shown below.


Feedback handling can be configured to work with applications requiring advanced control, such as multiple setpoints and multiple feedbacks. Three types of control are common.

\section*{Single Zone, Single Setpoint}

Single Zone Single Setpoint is a basic configuration. Setpoint 1 is added to any other reference (if any, see Reference Handling) and the feedback signal is selected using par. 20-20 Feedback Function.

\section*{Multi Zone, Single Setpoint}

Multi Zone Single Setpoint uses two or three feedback sensors but only one setpoint. The feedbacks can be added, subtracted (only feedback 1 and 2) or averaged. In addition, the maximum or minimum value may be used. Setpoint 1 is used exclusively in this configuration.

If Multi Setpoint Min [13] is selected, the setpoint/feedback pair with the largest difference controls the speed of the drive. Multi Setpoint Maximum [14] attempts to keep all zones at or below their respective setpoints, while Multi Setpoint Min [13] attempts to keep all zones at or above their respective setpoints.

\section*{Example:}

A two zone two setpoint application Zone 1 setpoint is 15 bar and the feedback is 5.5 bar. Zone 2 setpoint is 4.4 bar and the feedback is 4.6 bar. If Multi Setpoint Max [14] is selected, Zone 1's setpoint and feedback are sent to the PID controller, since this has the smaller difference (feedback is higher than setpoint, resulting in a negative difference). If Multi Setpoint Min [13] is selected, Zone 2's setpoint and feedback is sent to the PID controller, since this has the larger difference (feedback is lower than setpoint, resulting in a positive difference).

\subsection*{2.8.6 Feedback Conversion}

In some applications it may be useful to convert the feedback signal. One example of this is using a pressure signal to provide flow feedback. Since the square root of pressure is proportional to flow, the square root of the pressure signal yields a value proportional to the flow. This is shown below.


\subsection*{2.8.7 Reference Handling}

Details for Open Loop and Closed Loop operation.
A block diagram of how the drive produces the Remote Reference is shown below:.


The Remote Reference is comprised of:
- Preset references.
- External references (analog inputs, pulse frequency inputs, digital potentiometer inputs and serial communication bus references).
- The Preset relative reference.
- Feedback controlled setpoint.

Up to 8 preset references can be programmed in the drive. The active preset reference can be selected using digital inputs or the serial communications bus. The reference can also be supplied externally, most commonly from an analog input. This external source is selected by one of the 3 Reference Source parameters (par. 3-15 Reference 1 Source, par. 3-16 Reference 2 Source and par. 3-17 Reference 3 Source). Digipot is a digital potentiometer. This is also commonly called a Speed Up/Speed Down Control or a Floating Point Control. To set it up, one digital input is programmed to increase the reference while another digital input is programmed to decrease the reference. A third digital input can be used to reset the Digipot reference. All reference resources and the bus reference are added to produce the total External Reference. The External Reference, the Preset Reference or the sum of the two can be selected to be the active reference. Finally, this reference can by be scaled using par. 3-14 Preset Relative Reference.

The scaled reference is calculated as follows:
Reference \(=X+X \times\left(\frac{Y}{100}\right)\)
Where X is the external reference, the preset reference or the sum of these and Y is par. 3-14 Preset Relative Reference in [\%].

If Y , par. 3-14 Preset Relative Reference is set to \(0 \%\), the reference will not be affected by the scaling.

\subsection*{2.8.8 Example of Closed Loop PID Control}

The following is an example of a Closed Loop Control for a ventilation system:


In a ventilation system, the temperature is to be maintained at a constant value. The desired temperature is set between -5 and \(+35^{\circ} \mathrm{C}\) using a \(0-10\) volt potentiometer. Because this is a cooling application, if the temperature is above the set-point value, the speed of the fan must be increased to provide more cooling air flow. The temperature sensor has a range of -10 to \(+40^{\circ} \mathrm{C}\) and uses a two-wire transmitter to provide a \(4-20 \mathrm{~mA}\) signal. The output frequency range of the frequency converter is 10 to 50 Hz .
1. Start/Stop via switch connected between terminals \(12(+24 \mathrm{~V})\) and 18.
2. Temperature reference via a potentiometer \(\left(-5\right.\) to \(\left.+35^{\circ} \mathrm{C}, 010 \mathrm{~V}\right)\) connected to terminals 50 ( +10 V ), 53 (input) and 55 (common).
3. Temperature feedback via transmitter \(\left(-10-40^{\circ} \mathrm{C}, 4-20 \mathrm{~mA}\right)\) connected to terminal 54. Switch S202 behind the LCP set to ON (current input).


\subsection*{2.8.9 Programming Order}
\begin{tabular}{|c|c|c|}
\hline Function & Par. no. & Setting \\
\hline \multicolumn{3}{|l|}{1) Make sure the motor runs properly. Do the following:} \\
\hline Set the motor parameters using nameplate data. & 1-2* & As specified by motor name plate \\
\hline Run Automatic Motor Adaptation. & 1-29 & Enable complete AMA [1] and then run the AMA function. \\
\hline \multicolumn{3}{|l|}{2) Check that the motor is running in the right direction.} \\
\hline Run Motor Rotation Check. & 1-28 & If the motor runs in the wrong direction, remove power temporarily and reverse two of the motor phases. \\
\hline \multicolumn{3}{|l|}{3) Make sure the frequency converter limits are set to safe values} \\
\hline Check that the ramp settings are within capabilities of the drive and allowed application operating specifications. & \[
\begin{aligned}
& 3-41 \\
& 3-42
\end{aligned}
\] & \begin{tabular}{l}
60 sec . \\
60 sec . \\
Depends on motor/load size! Also active in Hand mode.
\end{tabular} \\
\hline Prohibit the motor from reversing (if necessary) & 4-10 & Clockwise [0] \\
\hline Set acceptable limits for the motor speed. & \[
\begin{array}{r}
4-12 \\
4-14 \\
4-19
\end{array}
\] & \begin{tabular}{l}
10 Hz , Motor min speed \\
50 Hz , Motor max speed \\
50 Hz , Drive max output frequency
\end{tabular} \\
\hline Switch from open loop to closed loop. & 1-00 & Closed Loop [3] \\
\hline \multicolumn{3}{|l|}{4) Configure the feedback to the PID controller.} \\
\hline Select the appropriate reference/feedback unit. & 20-12 & Bar [71] \\
\hline \multicolumn{3}{|l|}{5) Configure the set-point reference for the PID controller.} \\
\hline Set acceptable limits for the set-point reference. & \[
\begin{aligned}
& 20-13 \\
& 20-14
\end{aligned}
\] & \[
\begin{aligned}
& 0 \text { Bar } \\
& 10 \mathrm{Bar}
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Choose current or voltage by switches S201 / S202} \\
\hline \multicolumn{3}{|l|}{6) Scale the analog inputs used for set-point reference and feedback.} \\
\hline Scale Analog Input 53 for the pressure range of the potentiometer (0-10 Bar, 0-10 V). & \[
\begin{array}{|l|}
\hline 6-10 \\
6-11 \\
6-14 \\
6-15 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 0 \mathrm{~V} \\
& 10 \mathrm{~V} \text { (default) } \\
& 0 \mathrm{Bar} \\
& 10 \mathrm{Bar} \\
& \hline
\end{aligned}
\] \\
\hline Scale Analog Input 54 for pressure sensor (0-10 Bar, 4-20 mA) & \[
\begin{aligned}
& 6-22 \\
& 6-23 \\
& 6-24 \\
& 6-25 \\
& \hline
\end{aligned}
\] & 4 mA
20 mA (default)
0 Bar
10 Bar \\
\hline \multicolumn{3}{|l|}{7) Tune the PID controller parameters.} \\
\hline Adjust the drive's Closed Loop Controller, if needed. & \[
\begin{aligned}
& 20-93 \\
& 20-94 \\
& \hline
\end{aligned}
\] & See Optimization of the PID Controller, below. \\
\hline \multicolumn{3}{|l|}{8) Finished!} \\
\hline Save the parameter setting to the LCP for safe keeping & 0-50 & A/l to LCP [1] \\
\hline
\end{tabular}

\subsection*{2.8.10 Tuning the Drive Closed Loop Controller}

Once the drive's Closed Loop Controller has been set up, the performance of the controller should be tested. In many cases, its performance may be acceptable using the default values of par. 20-93 PID Proportional Gain and par. 20-94 PID Integral Time. However, in some cases it may be helpful to optimize these parameter values to provide faster system response while still controlling speed overshoot.

\subsection*{2.8.11 Manual PID Adjustment}
1. Start the motor
2. Set par. 20-93 PID Proportional Gain to 0.3 and increase it until the feedback signal begins to oscillate. If necessary, start and stop the drive or make step changes in the set-point reference to attempt to cause oscillation. Next reduce the PID Proportional Gain until the feedback signal stabilizes. Then reduce the proportional gain by \(40-60 \%\).
3. Set par. 20-94 PID Integral Time to 20 sec . and reduce it until the feedback signal begins to oscillate. If necessary, start and stop the drive or make step changes in the set-point reference to attempt to cause oscillation. Next, increase the PID Integral Time until the feedback signal stabilizes. Then increase of the Integral Time by \(15-50 \%\).
4. par. 20-95 PID Differentiation Time should only be used for very fast-acting systems. The typical value is \(25 \%\) of par. 20-94 PID Integral Time. The differential function should only be used when the setting of the proportional gain and the integral time has been fully optimized. Make sure that oscillations of the feedback signal are sufficiently dampened by the low-pass filter for the feedback signal (par. 6-16, 6-26, 5-54 or 5-59 as required).

\subsection*{2.9 General aspects of EMC}

\subsection*{2.9.1 General Aspects of EMC Emissions}

Electrical interference is usually conducted at frequences in the range 150 kHz to 30 MHz . Airborne interference from the drive system in the range 30 MHz to 1 GHz is generated from the inverter, motor cable, and the motor.
As shown in the illustration below, capacitive currents in the motor cable coupled with a high dV/dt from the motor voltage generate leakage currents. The use of a screened motor cable increases the leakage current (see illustration below) because screened cables have higher capacitance to earth than unscreened cables. If the leakage current is not filtered, it will cause greater interference on the mains in the radio frequency range below approximately 5 MHz . Since the leakage current ( \(\mathrm{I}_{1}\) ) is carried back to the unit through the screen ( \(\mathrm{I}_{3}\) ), there will in principle only be a small electro-magnetic field ( \(\mathrm{I}_{4}\) ) from the screened motor cable according to the below figure.

The screen reduces the radiated interference but increases the low-frequency interference on the mains. The motor cable screen must be connected to the frequency converter enclosure as well as on the motor enclosure. This is best done by using integrated screen clamps so as to avoid twisted screen ends (pigtails). These increase the screen impedance at higher frequencies, which reduces the screen effect and increases the leakage current ( \(\mathrm{I}_{4}\) ). If a screened cable is used for fieldbusfieldbus, relay, control cable, signal interface and brake, the screen must be mounted on the enclosure at both ends. In some situations, however, it will be necessary to break the screen to avoid current loops.


If the screen is to be placed on a mounting plate for the frequency converter, the mounting plate must be made of metal, because the screen currents have to be conveyed back to the unit. Moreover, ensure good electrical contact from the mounting plate through the mounting screws to the frequency converter chassis.

When unscreened cables are used, some emission requirements are not complied with, although the immunity requirements are observed.

In order to reduce the interference level from the entire system (unit + installation), make motor and brake cables as short as possible. Avoid placing cables with a sensitive signal level alongside motor and brake cables. Radio interference higher than 50 MHz (airborne) is especially generated by the control electronics.

\subsection*{2.9.2 Emission Requirements}

According to the EMC product standard for adjustable speed frequency converters EN/IEC61800-3:2004 the EMC requirements depend on the intended use of the frequency converter. Four categories are defined in the EMC product standard. The definitions of the four categories together with the requirements for mains supply voltage conducted emissions are given in the table below:
\begin{tabular}{|l|l|l|}
\hline Category & Definition & \begin{tabular}{c} 
Conducted emission requirement \\
according to the limits given in \\
EN55011
\end{tabular} \\
C1 & \begin{tabular}{l} 
Class B \\
frequency converters installed in the first environment (home and office) with a supply \\
voltase than 1000 V.
\end{tabular} & \begin{tabular}{l} 
Class A Group 1 \\
frequency converters installed in the first environment (home and office) with a supply \\
voltage less than 1000 V, which are neither plug-in nor movable and are intended to be \\
installed and commissioned by a professional. \\
frequency converters installed in the second environment (industrial) with a supply volt- \\
age lower than 1000 V.
\end{tabular} \\
C3 frequency converters installed in the second environment with a supply voltage equal to \\
or above 1000 V or rated current equal to or above 400 A or intended for use in complex \\
systems.
\end{tabular}\(\quad\)\begin{tabular}{c} 
Class A Group 2 \\
An EMC plan should be made.
\end{tabular}

When the generic emission standards are used the frequency converters are required to comply with the following limits:
\begin{tabular}{|l|l|l|}
\hline Environment & Generic standard & \begin{tabular}{r} 
Conducted emission requirement ac- \\
cording to the limits given in \\
EN55011
\end{tabular} \\
\begin{tabular}{l} 
First environment \\
(home and office)
\end{tabular} & \begin{tabular}{l} 
EN/IEC61000-6-3 Emission standard for residential, commercial and \\
light industrial environments. \\
Second environment \\
(industrial environment)
\end{tabular} & EN/IEC61000-6-4 Emission standard for industrial environments.
\end{tabular}

\subsection*{2.9.3 EMC Test Results (Emission)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{The following test results have been obtained using a system with a frequency converter (with options if relevant), a screened control cable, a control box with potentiometer, as well as a motor and motor screened cable.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{RFI filter type}} & \multicolumn{3}{|c|}{\begin{tabular}{l}
Conducted emission. \\
Maximum shielded cable length.
\end{tabular}} & \multicolumn{2}{|r|}{Radiated emission} \\
\hline & & \multicolumn{2}{|l|}{Industrial environment} & Housing, trades and light industries & Industrial environment & Housing, trades and light industries \\
\hline Standard & & \[
\begin{array}{|c}
\hline \text { EN } 55011 \text { Class } \\
\text { A2 } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { EN } 55011 \\
\text { Class A1 } \\
\hline
\end{gathered}
\] & EN 55011 Class B & EN 55011 Class A1 & EN 55011 Class B \\
\hline \multicolumn{7}{|l|}{H1} \\
\hline 1.1-45 kW 200-240 V & T2 & 150 m & 150 m & 50 m & Yes & No \\
\hline 1.1-90 kW 380-480 V & T4 & 150 m & 150 m & 50 m & Yes & No \\
\hline \multicolumn{7}{|l|}{H2} \\
\hline \(1.1-3.7\) kW 200-240 V & T2 & 5 m & No & No & No & No \\
\hline \(5.5-45 \mathrm{~kW} 200-240 \mathrm{~V}\) & T2 & 25 m & No & No & No & No \\
\hline 1.1-7.5 kW 380-480 V & T4 & 5 m & No & No & No & No \\
\hline 11-90 kW 380-480 V & T4 & 25 m & No & No & No & No \\
\hline 110-1000 kW 380-480 V & T4 & 150 m & No & No & No & No \\
\hline 45-1400 kW 525-690 V & T7 & 150 m & No & No & No & No \\
\hline \multicolumn{7}{|l|}{H3} \\
\hline 1.1-45 kW 200-240 V & T2 & 75 m & 50 m & 10 m & Yes & No \\
\hline 1.1-90 kW 380-480 V & T4 & 75 m & 50 m & 10 m & Yes & No \\
\hline \multicolumn{7}{|l|}{H4} \\
\hline 110-1000 kW 380-480 V & T4 & 150 m & 150 m & No & Yes & No \\
\hline 45-400 kW 525-690 V & T7 & 150 m & 30 m & No & No & No \\
\hline \multicolumn{7}{|l|}{Hx} \\
\hline 1.1-90 kW 525-600 V & T6 & - & - & - & - & - \\
\hline
\end{tabular}

Table 2.1: EMC Test Results (Emission)
\(H X, H 1, H 2\) or \(H 3\) is defined in the type code pos. 16-17 for EMC filters
HX - No EMC filters build in the frequency converter ( 600 V units only)
H1 - Integrated EMC filter. Fulfil Class A1/B
H2 - No additional EMC filter. Fulfil Class A2
H3 - Integrated EMC filter. Fulfil class A1/B (Frame size A1 only)
H4 - Integrated EMC filter. Fulfil class A1

\subsection*{2.9.4 General Aspects of Harmonics Emission}

A frequency converter takes up a non-sinusoidal current from mains, which increases the input current \(\mathrm{I}_{\text {RMs }}\). A non-sinusoidal current is transformed by means of a Fourier analysis and split up into sine-wave currents with different frequencies, i.e. different harmonic currents \(\mathrm{I}_{\mathrm{N}}\) with 50 Hz as the basic frequency:

The harmonics do not affect the power consumption directly but increase the heat losses in the installation (transformer, cables). Consequently, in plants with a high percentage of rectifier load, maintain harmonic currents at a low level to avoid overload of the transformer and high temperature in the cables.
\begin{tabular}{|lccc|}
\hline Harmonic currents & \(\mathrm{I}_{1}\) & \(\mathrm{I}_{5}\) & I 7 \\
\hline Hz & 50 Hz & 250 Hz & 350 Hz \\
\hline
\end{tabular}

\(\square\)

To ensure low harmonic currents, the frequency converter is equipped with intermediate circuit coils as standard. This normally reduces the input current \(I_{\text {RMS }}\) by \(40 \%\).

The voltage distortion on the mains supply voltage depends on the size of the harmonic currents multiplied by the mains impedance for the frequency in question. The total voltage distortion THD is calculated on the basis of the individual voltage harmonics using this formula:
\[
T H D \%=\sqrt{U \frac{2}{5}+U \frac{2}{7}+\ldots+U \frac{2}{N}}
\]

\subsection*{2.9.5 Harmonics Emission Requirements}

\section*{Equipment connected to the public supply network:}
( \(U_{N} \%\) of U)
\begin{tabular}{|ll|}
\hline Options: & Definition: \\
1 & \begin{tabular}{l} 
IEC/EN 61000-3-2 Class A for 3-phase balanced equip- \\
ment (for professional equipment only up to 1 kW total \\
power).
\end{tabular} \\
2 & \begin{tabular}{l} 
IEC/EN 61000-3-12 Equipment 16A-75A and professio- \\
nal equipment as from 1 kW up to 16A phase current.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.9.6 Harmonics Test Results (Emission)}

Power sizes up to PK75 in T2 and T4 complies with IEC/EN 61000-3-2 Class A. Power sizes from P1K1 and up to P18K in T2 and up to P90K in T4 complies with IEC/EN 61000-3-12, Table 4. Power sizes P110-P450 in T4 also complies with IEC/EN 61000-3-12 even though not required because currents are above 75 A .
\begin{tabular}{|lcccccc|}
\hline & & Individual Harmonic Current \(\mathrm{I}_{\mathrm{n}} / \mathrm{I}_{1}(\%)\) & & Harmonic current distortion factor (\%) \\
\hline & \(\mathrm{I}_{5}\) & \(\mathrm{I}_{7}\) & \(\mathrm{I}_{11}\) & \(\mathrm{I}_{13}\) & THD & PWHD \\
\hline Actual (typical) & 40 & 20 & 10 & 8 & 46 & 45 \\
Limit for \(\mathrm{R}_{\text {sce }} \geq 120\) & 40 & 25 & 15 & 10 & 48 & 46 \\
\hline
\end{tabular}

Table 2.2: Harmonics test results (Emission)

Provided that the short-circuit power of the supply \(\mathrm{S}_{\mathrm{sc}}\) is greater than or equal to:
\(S_{S C}=\sqrt{3} \times R_{S C E} \times U_{\text {mains }} \times \prime_{\text {equ }}=\sqrt{3} \times 120 \times 400 \times \prime_{\text {equ }}\)
at the interface point between the user's supply and the public system ( \(\mathrm{R}_{\mathrm{sce}}\) ).

It is the responsibility of the installer or user of the equipment to ensure, by consultation with the distribution network operator if necessary, that the equipment is connected only to a supply with a short-circuit power \(\mathrm{S}_{\text {sc }}\) greater than or equal to specified above.
Other power sizes can be connected to the public supply network by consultation with the distribution network operator.

Compliance with various system level guidelines:
The harmonic current data in the table are given in accordance with IEC/EN61000-3-12 with reference to the Power Drive Systems product standard. They may be used as the basis for calculation of the harmonic currents' influence on the power supply system and for the documentation of compliance with relevant regional guidelines: IEEE 519-1992; G5/4.

\subsection*{2.9.7 Immunity Requirements}

The immunity requirements for frequency converters depend on the environment where they are installed. The requirements for the industrial environment are higher than the requirements for the home and office environment. All Danfoss frequency converters comply with the requirements for the industrial environment and consequently comply also with the lower requirements for home and office environment with a large safety margin.

In order to document immunity against electrical interference from electrical phenomena, the following immunity tests have been made on a system consisting of a frequency converter (with options if relevant), a screened control cable and a control box with potentiometer, motor cable and motor. The tests were performed in accordance with the following basic standards:
- EN 61000-4-2 (IEC 61000-4-2): Electrostatic discharges (ESD): Simulation of electrostatic discharges from human beings.
- EN 61000-4-3 (IEC 61000-4-3): Incoming electromagnetic field radiation, amplitude modulated simulation of the effects of radar and radio communication equipment as well as mobile communications equipment.
- EN 61000-4-4 (IEC 61000-4-4): Burst transients: Simulation of interference brought about by switching a contactor, relay or similar devices.
- EN 61000-4-5 (IEC 61000-4-5): Surge transients: Simulation of transients brought about e.g. by lightning that strikes near installations.
- EN 61000-4-6 (IEC 61000-4-6): RF Common mode: Simulation of the effect from radio-transmission equipment joined by connection cables.

See following EMC immunity form.

\section*{EMC immunity form}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Voltage range: \(200-240 \mathrm{~V}, 380-480 \mathrm{~V}\)} \\
\hline Basic standard & \[
\begin{gathered}
\text { Burst } \\
\text { IEC } 61000-4-4
\end{gathered}
\] & \[
\begin{gathered}
\text { Surge } \\
\text { IEC 61000-4-5 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { ESD } \\
\text { IEC } \\
61000-4-2
\end{gathered}
\] & Radiated electromagnetic field IEC 61000-4-3 & RF common mode voltage IEC 61000-4-6 \\
\hline Acceptance criterion & B & B & B & A & A \\
\hline Line & 4 kV CM & \[
\begin{gathered}
2 \mathrm{kV} / 2 \Omega \mathrm{DM} \\
4 \mathrm{kV} / 12 \Omega \mathrm{CM}
\end{gathered}
\] & - & - & 10 Vrms \\
\hline Motor & 4 kV CM & \(4 \mathrm{kV} / 2 \Omega^{1)}\) & - & - & \(10 \mathrm{~V}_{\text {RMS }}\) \\
\hline Brake & 4 kV CM & \(4 \mathrm{kV} / 2 \Omega^{1)}\) & - & - & \(10 \mathrm{~V}_{\text {RMS }}\) \\
\hline Load sharing & 4 kV CM & \(4 \mathrm{kV} / 2 \Omega^{1)}\) & - & - & \(10 \mathrm{~V}_{\text {RMS }}\) \\
\hline Control wires & 2 kV CM & \(2 \mathrm{kV} / 2 \Omega^{1)}\) & - & - & \(10 \mathrm{~V}_{\text {RMS }}\) \\
\hline Standard bus & 2 kV CM & \(2 \mathrm{kV} / 2 \Omega^{1)}\) & - & - & 10 VRMS \\
\hline Relay wires & 2 kV CM & \(2 \mathrm{kV} / 2 \Omega^{1)}\) & - & - & 10 VRMS \\
\hline Application and Fieldbus options & 2 kV CM & \(2 \mathrm{kV} / 2 \Omega^{1)}\) & - & - & 10 Vrms \\
\hline LCP cable & 2 kV CM & \(2 \mathrm{kV} / 2 \Omega^{1)}\) & - & - & \(10 \mathrm{~V}_{\text {RMS }}\) \\
\hline External 24 V DC & 2 kV CM & \[
\begin{gathered}
0.5 \mathrm{kV} / 2 \Omega \mathrm{DM} \\
1 \mathrm{kV} / 12 \Omega \mathrm{CM}
\end{gathered}
\] & - & - & 10 VRMS \\
\hline Enclosure & - & - & \begin{tabular}{l}
8 kV AD \\
6 kV CD
\end{tabular} & \(10 \mathrm{~V} / \mathrm{m}\) & - \\
\hline \begin{tabular}{l}
AD: Air Discharge \\
CD: Contact Discharge \\
CM: Common mode \\
DM: Differential mode \\
1. Injection on cable shield.
\end{tabular} & & & & & \\
\hline
\end{tabular}

Table 2.3: Immunity

\subsection*{2.10 Galvanic isolation (PELV)}

\subsection*{2.10.1 PELV - Protective Extra Low Voltage}

PELV offers protection by way of extra low voltage. Protection against electric shock is ensured when the electrical supply is of the PELV type and the installation is made as described in local/national regulations on PELV supplies.

All control terminals and relay terminals 01-03/04-06 comply with PELV (Protective Extra Low Voltage) (Does not apply to grounded Delta leg above 400 V).

Galvanic (ensured) isolation is obtained by fulfilling requirements for higher isolation and by providing the relevant creapage/clearance distances. These requirements are described in the EN 61800-5-1 standard.

The components that make up the electrical isolation, as described below, also comply with the requirements for higher isolation and the relevant test as described in EN 61800-5-1.
The PELV galvanic isolation can be shown in six locations (see illustration):
1. Power supply (SMPS) incl. signal isolation of \(U_{D C}\), indicating the intermediate current voltage.
2. Gate drive that runs the IGBTs (trigger transformers/opto-couplers).
3. Current transducers.
4. Opto-coupler, brake module.
5. Internal inrush, RFI, and temperature measurement circuits.
6. Custom relays.


Illustration 2.10: Galvanic isolation

The functional galvanic isolation ( a and b on drawing) is for the 24 V back-up option and for the RS 485 standard bus interface.


Installation at high altitude:
380-500 V, enclosure A, B and C: At altitudes above 2 km , please contact Danfoss regarding PELV.
380-500V, enclosure D, E and F: At altitudes above 3 km , please contact Danfoss regarding PELV.
525-690 V: At altitudes above 2 km , please contact Danfoss regarding PELV.

\subsection*{2.11 Earth Leakage Current}


Touching the electrical parts may be fatal - even after the equipment has been disconnected from mains.
Also make sure that other voltage inputs have been disconnected, such as load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic back-up.
Before touching any electrical parts, wait at least the amount of time indicated in the Safety Precautions section.
Shorter time is allowed only if indicated on the nameplate for the specific unit.

\section*{Leakage Current}

The earth leakage current from the frequency converter exceeds 3.5 mA . To ensure that the earth cable has a good mechanical connection to the earth connection (terminal 95), the cable cross section must be at least \(10 \mathrm{~mm}^{2}\) or 2 rated earth wires terminated separately.

\section*{Residual Current Device}

This product can cause a d.c. current in the protective conductor. Where a residual current device (RCD) is used for protection in case of direct or indirect contact, only an RCD of Type B is allowed on the supply side of this product. Otherwise, another protective measure shall be applied, such as separation from the environment by double or reinforced insulation, or isolation from the supply system by a transformer. See also RCD Application Note MN.90.GX.02.
Protective earthing of the frequency converter and the use of RCD's must always follow national and local regulations.

\subsection*{2.12 Brake Function}

\subsection*{2.12.1 Selection of Brake Resistor}

In certain applications, for instance in tunnel or underground railway station ventilation systems, it is desirable to bring the motor to a stop more rapidly than can be achieved through controlling via ramp down or by free-wheeling. In such applications, dynamic braking with a braking resistor may be utilized. Using a braking resistor ensures that the energy is absorbed in the resistor and not in the frequency converter.

If the amount of kinetic energy transferred to the resistor in each braking period is not known, the average power can be calculated on the basis of the cycle time and braking time also called intermitted duty cycle. The resistor intermittent duty cycle is an indication of the duty cycle at which the resistor is active. The below figure shows a typical braking cycle.

The intermittent duty cycle for the resistor is calculated as follows:
\[
\text { Duty Cycle }=t_{b} / T
\]

T = cycle time in seconds
\(t_{b}\) is the braking time in seconds (as part of the total cycle time)


Danfoss offers brake resistors with duty cycle of \(5 \%, 10 \%\) and \(40 \%\) suitable for use with the FC 102 frequency converter series. If a \(10 \%\) duty cycle resistor is applied, this is able of absorbing braking power upto \(10 \%\) of the cycle time with the remaining \(90 \%\) being used to dissipate heat from the resistor.

For further selection advice, please contact Danfoss.
NB!
If a short circuit in the brake transistor occurs, power dissipation in the brake resistor is only prevented by using a mains switch or
contactor to disconnect the mains for the frequency converter. (The contactor can be controlled by the frequency converter).

\subsection*{2.12.2 Brake Resistor Calculation}

The brake resistance is calculated as shown:
\[
\begin{aligned}
& R_{b r}[\Omega]=\frac{U_{d c}^{2}}{P_{\text {peak }}} \\
& \text { where } \\
& P_{\text {peak }}=P_{\text {motor }} \times M_{b r} \times \eta_{\text {motor }} \times \eta[\mathrm{W}]
\end{aligned}
\]

As can be seen, the brake resistance depends on the intermediate circuit voltage ( \(U_{D C}\) ).
The brake function of the frequency converter is settled in 3 areas of mains power supply:
\begin{tabular}{|l|l|l|l|}
\hline Size & Brake active & Warning before cut out & Cut out (trip) \\
\hline \(3 \times 200-240 \mathrm{~V}\) & \(390 \mathrm{~V}\left(U_{D C}\right)\) & 405 V & 410 V \\
\hline \(3 \times 380-480 \mathrm{~V}\) & 778 V & 810 V & 820 V \\
\hline \(3 \times 525-600 \mathrm{~V}\) & 943 V & 965 V & 975 V \\
\hline \(3 \times 525-690 \mathrm{~V}\) & 1084 V & 1109 V & 1130 V \\
\hline
\end{tabular}
NB! \begin{tabular}{l} 
Check that the brake resistor can cope with a voltage of \(410 \mathrm{~V}, 820 \mathrm{~V}\) or 975 V - unless Danfoss brake resistors are used.
\end{tabular}

Danfoss recommends the brake resistance Rrec, i.e. one that guarantees that the frequency converter is able to brake at the highest braking torque ( \(\left.M_{b r(\%)}\right)\) of \(110 \%\). The formula can be written as:
\(\eta_{\text {motor }}\) is typically at 0.90
\[
R_{\text {rec }}[\Omega]=\frac{U_{d c}^{2} \times 100}{P_{\text {motor } \times M_{\text {br }(\%)} \times \times{ }_{\text {motor }}} \text {. }}
\]

For \(200 \mathrm{~V}, 480 \mathrm{~V}\) and 600 V frequency converters, R rec at \(160 \%\) braking torque is written as:
\(200 \mathrm{~V}: R_{\text {rec }}=\frac{107780}{P_{\text {motor }}}[\Omega]\)
\(\left.480 \mathrm{~V}: R_{\text {rec }}=\frac{375300}{P_{\text {motor }}}[\Omega] 1\right)\)
\[
480 \mathrm{~V}: R_{\text {rec }}=\frac{428914}{P_{\text {motor }}}[\Omega]^{2)}
\]
\(600 \mathrm{~V}: R_{\text {rec }}=\frac{630137}{P_{\text {motor }}}[\Omega]\)
\(690 \mathrm{~V}: R_{\text {rec }}=\frac{832664}{P_{\text {motor }}}[\Omega]\)
1) For frequency converters \(\leq 7.5 \mathrm{~kW}\) shaft output
2) For frequency converters \(>7.5 \mathrm{~kW}\) shaft output


NB!
The resistor brake circuit resistance selected should not be higher than that recommended by Danfoss. If a brake resistor with a higher ohmic value is selected, the braking torque may not be achieved because there is a risk that the frequency converter cuts out for safety reasons.


NB!
If a short circuit in the brake transistor occurs, power dissipation in the brake resistor is only prevented by using a mains switch or contactor to disconnect the mains for the frequency converter. (The contactor can be controlled by the frequency converter).


Do not touch the brake resistor as it can get very hot while/after braking.

\subsection*{2.12.3 Control with Brake Function}

The brake is protected against short-circuiting of the brake resistor, and the brake transistor is monitored to ensure that short-circuiting of the transistor is detected. A relay/digital output can be used for protecting the brake resistor against overloading in connection with a fault in the frequency converter. In addition, the brake makes it possible to read out the momentary power and the mean power for the latest 120 seconds. The brake can also monitor the power energizing and make sure it does not exceed a limit selected in par. 2-12 Brake Power Limit (kW). In par. 2-13 Brake Power Monitoring, select the function to carry out when the power transmitted to the brake resistor exceeds the limit set in par. 2-12 Brake Power Limit (kW).
NB!
Monitoring the brake power is not a safety function; a thermal switch is required for that purpose. The brake resistor circuit is not earth
leakage protected.

Over voltage control (OVC) (exclusive brake resistor) can be selected as an alternative brake function in par. 2-17 Over-voltage Control. This function is active for all units. The function ensures that a trip can be avoided if the DC link voltage increases. This is done by increasing the output frequency to limit the voltage from the DC link. It is a very useful function, e.g. if the ramp-down time is too short since tripping of the frequency converter is avoided. In this situation the ramp-down time is extended.

\subsection*{2.12.4 Brake Resistor Cabling}

EMC (twisted cables/shielding)
To reduce the electrical noise from the wires between the brake resistor and the frequency converter, the wires must be twisted.

For enhanced EMC performance a metal screen can be used.

\subsection*{2.13 Extreme Running Conditions}

\section*{Short Circuit (Motor Phase - Phase)}

The frequency converter is protected against short circuits by means of current measurement in each of the three motor phases or in the DC link. A short circuit between two output phases will cause an overcurrent in the inverter. The inverter will be turned off individually when the short circuit current exceeds the permitted value (Alarm 16 Trip Lock).
To protect the frequency converter against a short circuit at the load sharing and brake outputs please see the design guidelines.

\section*{Switching on the Output}

Switching on the output between the motor and the frequency converter is fully permitted. You cannot damage the frequency converter in any way by switching on the output. However, fault messages may appear.

\section*{Motor-generated Over-voltage}

The voltage in the intermediate circuit is increased when the motor acts as a generator. This occurs in following cases:
1. The load drives the motor (at constant output frequency from the frequency converter), ie. the load generates energy.
2. During deceleration ("ramp-down") if the moment of inertia is high, the friction is low and the ramp-down time is too short for the energy to be dissipated as a loss in the frequency converter, the motor and the installation.
3. Incorrect slip compensation setting may cause higher DC link voltage.

The control unit may attempt to correct the ramp if possible (par. 2-17 Over-voltage Control.
The inverter turns off to protect the transistors and the intermediate circuit capacitors when a certain voltage level is reached.
See par. 2-10 Brake Function and par. 2-17 Over-voltage Contro/ to select the method used for controlling the intermediate circuit voltage level.

\section*{Mains Drop-out}

During a mains drop-out, the frequency converter keeps running until the intermediate circuit voltage drops below the minimum stop level, which is typically \(15 \%\) below the frequency converter's lowest rated supply voltage. The mains voltage before the drop-out and the motor load determines how long it takes for the inverter to coast.

\section*{Static Overload in VVC \({ }^{\text {plus }}\) mode}

When the frequency converter is overloaded (the torque limit in par. 4-16 Torque Limit Motor Mode/par. 4-17 Torque Limit Generator Mode is reached), the controls reduces the output frequency to reduce the load.
If the overload is excessive, a current may occur that makes the frequency converter cut out after approx. 5-10 s.

\subsection*{2.13.1 Motor Thermal Protection}

This is the way Danfoss is protecting the motor from being overheated. It is an electronic feature that simulates a bimetal relay based on internal measurements. The characteristic is shown in the following figure:


Illustration 2.11: The X -axis is showing the ratio between \(\mathrm{I}_{\text {motor }}\) and \(\mathrm{I}_{\text {motor }}\) nominal. The Y - axis is showing the time in seconds before the ETR cuts off and trips the drive. The curves are showing the characteristic nominal speed at twice the nominal speed and at \(0,2 x\) the nominal speed.

It is clear that at lower speed the ETR cuts of at lower heat due to less cooling of the motor. In that way the motor are protected from being over heated even at low speed. The ETR feature is calculating the motor temperature based on actual current and speed. The calculated temperature is visible as a read out parameter in par. 16-18 Motor Thermal in the frequency converter.

The thermistor cut-out value is \(>3 \mathrm{k} \Omega\).

Integrate a thermistor (PTC sensor) in the motor for winding protection.

Motor protection can be implemented using a range of techniques: PTC sensor in motor windings; mechanical thermal switch (Klixon type); or Electronic Thermal Relay (ETR).


Using a digital input and 24 V as power supply:
Example: The frequency converter trips when the motor temperature is too high.
Parameter set-up:
Set par. 1-90 Motor Thermal Protection to Thermistor Trip [2]
Set par. 1-93 Thermistor Source to Digital Input 33 [6]



Using a digital input and 10 V as power supply:
Example: The frequency converter trips when the motor temperature is too high.
Parameter set-up:
Set par. 1-90 Motor Thermal Protection to Thermistor Trip [2]
Set par. 1-93 Thermistor Source to Digital Input 33 [6]


Using an analog input and 10 V as power supply:
Example: The frequency converter trips when the motor temperature is too high.

Parameter set-up:
Set par. 1-90 Motor Thermal Protection to Thermistor Trip [2]
Set par. 1-93 Thermistor Source to Analog Input 54 [2]
Do not select a reference source.


\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Input \\
Digital/analog
\end{tabular} & \begin{tabular}{l} 
Supply Voltage \\
Volt
\end{tabular} & \begin{tabular}{l} 
Threshold \\
Cut-out Values
\end{tabular} \\
\hline Digital & 24 V & \(<6.6 \mathrm{k} \Omega->10.8 \mathrm{k} \Omega\) \\
\hline Digital & 10 V & \(<800 \Omega->2.7 \mathrm{k} \Omega\) \\
\hline Analog & 10 V & \(<3.0 \mathrm{k} \Omega->3.0 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

\section*{NB!}

Check that the chosen supply voltage follows the specification of the used thermistor element.

\section*{Summary}

With the Torque limit feature the motor is protected for being overloaded independent of the speed. With the ETR the motor is protected for being over heated and there is no need for any further motor protection. That means when the motor is heated up the ETR timer controls for how long time the motor can be running at the high temperature before it is stopped in order to prevent over heating. If the motor is overloaded without reaching the temperature where the ETR shuts of the motor, the torque limit is protecting the motor and application for being overloaded.

ETR is activated in par. and is controlled in par. 4-16 Torque Limit Motor Mode. The time before the torque limit warning trips the frequency converter is set in par. 14-25 Trip Delay at Torque Limit.

\section*{3 IVS 102 Drive Selection}

\subsection*{3.1 Options and Accessories}
```

Danfoss offers a wide range of options and accessories for the frequency converters.

```

\subsection*{3.1.1 Mounting of Option Modules in Slot B}

The power to the frequency converter must be disconnected.

For A2 and A3 enclosures:
- Remove the LCP (Local Control Panel), the terminal cover, and the LCP frame from the frequency converter.
- Fit the MCB1xx option card into slot B.
- Connect the control cables and relieve the cable by the enclosed cable strips.

Remove the knock out in the extended LCP frame delivered in the option set, so that the option will fit under the extended LCP frame.
- Fit the extended LCP frame and terminal cover.
- Fit the LCP or blind cover in the extended LCP frame.
- Connect power to the frequency converter.
- Set up the input/output functions in the corresponding parameters, as mentioned in the section General Technical Data. For B1, B2, C1 and C2 enclosures:
- Remove the LCP and the LCP cradle
- Fit the MCB \(1 x x\) option card into slot \(B\)
- Connect the control cables and relieve the cable by the enclosed cable strips
- Fit the cradle
- Fit the LCP


\subsection*{3.1.2 General Purpose Input Output Module MCB 101}

MCB 101 is used for extension of the number of digital and analog inputs and outputs of the frequency converter.

Contents: MCB 101 must be fitted into slot B in the frequency converter.
- MCB 101 option module
- Extended LCP frame
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MCB Gene & \[
\begin{aligned}
& 10 \\
& \text { ral }
\end{aligned}
\] & & & & & & & & \multicolumn{5}{|l|}{FC Series B slot} \\
\hline & & & & & & & & & & & & & \\
\hline X30/ 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1 & 12 \\
\hline
\end{tabular}

\section*{Galvanic Isolation in the MCB 101}

Digital/analog inputs are galvanically isolated from other inputs/outputs on the MCB 101 and in the control card of the frequency converter. Digital/analog outputs in the MCB 101 are galvanically isolated from other inputs/outputs on the MCB 101, but not from these on the control card of the frequency converter.

If the digital inputs 7,8 or 9 are to be switched by use of the internal 24 V power supply (terminal 9 ) the connection between terminal 1 and 5 which is illustrated in the drawing has to be established.


\subsection*{3.1.3 Digital Inputs - Terminal X30/1-4}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Parameters for set-up: 5-16, 5-17 and 5-18} \\
\hline Number of digital inputs & Voltage level & Voltage levels & Tolerance & Max. Input impedance \\
\hline 3 & 0-24 V DC & \begin{tabular}{l}
PNP type: \\
Common \(=0 \mathrm{~V}\) \\
Logic "0": Input < 5 V DC \\
Logic "0": Input > 10 V DC \\
NPN type: \\
Common \(=24 \mathrm{~V}\) \\
Logic "0": Input > 19 V DC \\
Logic "0": Input < 14 V DC
\end{tabular} & \begin{tabular}{l}
\(\pm 28 \mathrm{~V}\) continuous \\
\(\pm 37 \mathrm{~V}\) in minimum 10 sec .
\end{tabular} & Approx. 5 k ohm \\
\hline
\end{tabular}

\subsection*{3.1.4 Analog Voltage Inputs - Terminal X30/10-12}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{8}{l|}{ Parameters for set-up: 6-3*, 6-4* and 16-76 } \\
\hline Number of analog voltage inputs & Standardized input signal & Tolerance & Resolution & Max. Input impedance \\
\hline 2 & \(0-10 \mathrm{~V}\) DC & \(\pm 20 \mathrm{~V}\) continuously & 10 bits & Approx. 5 K ohm \\
\hline
\end{tabular}

\subsection*{3.1.5 Digital Outputs - Terminal X30/5-7}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Parameters for set-up: 5-32 and 5-33 } \\
\hline Number of digital outputs & Output level & Tolerance & Max.impedance \\
\hline 2 & 0 or 24 V DC & \(\pm 4 \mathrm{~V}\) & \(\geq 600\) ohm \\
\hline
\end{tabular}

\subsection*{3.1.6 Analog Outputs - Terminal X30/5+8}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Parameters for set-up: 6-6* and 16-77 } \\
\hline Number of analog outputs & Output signal level & Tolerance & Max.impedance \\
\hline 1 & \(0 / 4-20 \mathrm{~mA}\) & \(\pm 0.1 \mathrm{~mA}\) & \(<500\) ohm \\
\hline
\end{tabular}

\subsection*{3.1.7 Relay Option MCB 105}

The MCB 105 option includes 3 pieces of SPDT contacts and must be fitted into option slot B.
\begin{tabular}{l} 
Electrical Data: \\
\hline Max terminal load \((\mathrm{AC}-1)^{1)}\) (Resistive load) \\
Max terminal load \((\mathrm{AC}-15)^{1)}\) (Inductive load @ \(\left.\operatorname{cos\varphi } 0.4\right)\) \\
Max terminal load \((\mathrm{DC}-1)^{1)}\) (Resistive load) \\
Max terminal load (DC-13) \({ }^{1)}\) (Inductive load) \\
Min terminal load (DC) \\
Max switching rate at rated load/min load
\end{tabular}
1) IEC 947 part 4 and 5

When the relay option kit is ordered separately the kit includes:
- Relay Module MCB 105
- Extended LCP frame and enlarged terminal cover
- Label for covering access to switches S201, S202 and S801
- Cable strips for fastening cables to relay module


\footnotetext{
\({ }^{1)}\) IMPORTANT! The label MUST be placed on the LCP frame as shown (UL approved).
}


How to add the MCB 105 option:
- See mounting instructions in the beginning of section Options and Accessories
- The power to the live part connections on relay terminals must be disconnected.
- Do not mix live parts (high voltage) with control signals (PELV).
- Select the relay functions in par. 5-40 Function Relay [6-8], par. 5-41 On Delay, Relay [6-8] and par. 5-42 Off Delay, Relay [6-8]. NB! (Index [6] is relay 7, index [7] is relay 8, and index [8] is relay 9)



Do not combine low voltage parts and PELV systems.

\subsection*{3.1.8 24 V Back-Up Option MCB 107 (Option D)}

External 24 V DC Supply

An external 24 V DC supply can be installed for low-voltage supply to the control card and any option card installed. This enables full operation of the LCP (including the parameter setting) and fieldbusses without mains supplied to the power section.

External 24 V DC supply specification:
Input voltage range
Max. input current
Average input current for the frequency converter
Max cable length
Input capacitance load
Power-up delay

The inputs are protected.

Terminal numbers:
Terminal 35: - external 24 V DC supply.
Terminal 36: + external 24 V DC supply.

Follow these steps:
1. Remove the LCP or Blind Cover
2. Remove the Terminal Cover
3. Remove the Cable De-coupling Plate and the plastic cover underneath
4. Insert the 24 V DC Backup External Supply Option in the Option Slot
5. Mount the Cable De-coupling Plate
6. Attach the Terminal Cover and the LCP or Blind Cover.

When MCB 107, 24 V backup option is supplying the control circuit, the internal 24 V supply is automatically disconnected.


\subsection*{3.1.9 Analog I/O option MCB 109}

The Analog I/O card is supposed to be used in e.g. the following cases:
- Providing battery back-up of clock function on control card
- As general extension of analog I/O selection available on control card, e.g. for multi-zone control with three pressure transmitters
- Turning frequency converter into de-central I/O block supporting Building Management System with inputs for sensors and outputs for operating dampers and valve actuators
- Support Extended PID controllers with I/Os for set point inputs, transmitter/sensor inputs and outputs for actuators.


Illustration 3.4: Principle diagram for Analog I/O mounted in frequency converter.

\section*{Analog I/O configuration}
\(3 \times\) Analog Inputs, capable of handling following:
- 0-10 VDC

OR
- \(\quad 0-20 \mathrm{~mA}\) (voltage input \(0-10 \mathrm{~V}\) ) by mounting a \(510 \Omega\) resistor across terminals (see NB!)
- \(\quad 4-20 \mathrm{~mA}\) (voltage input 2-10V) by mounting a \(510 \Omega\) resistor across terminals (see NB)
- Ni1000 temperature sensor of \(1000 \Omega\) at \(0^{\circ}\) C. Specifications according to DIN43760
- Pt1000 temperature sensor of \(1000 \Omega\) at \(0^{\circ}\) C. Specifications according to IEC 60751

\footnotetext{
\(3 \times\) Analog Outputs supplying 0-10 VDC.
}


NB!
Please note the values available within the different standard groups of resistors:
E12: Closest standard value is \(470 \Omega\), creating an input of \(449.9 \Omega\) and 8.997 V .
E24: Closest standard value is \(510 \Omega\), creating an input of \(486.4 \Omega\) and 9.728 V .
E48: Closest standard value is \(511 \Omega\), creating an input of \(487.3 \Omega\) and 9.746 V .
E96: Closest standard value is \(523 \Omega\), creating an input of \(498.2 \Omega\) and 9.964 V .

\section*{Analog inputs - terminal X42/1-6}

Parameter group for read out: 18-3*. See also IVS 102 Drive Programming Guide.

Parameter groups for set-up: 26-0*, 26-1*, 26-2* and 26-3*. See also IVS 102 Drive Programming Guide.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathbf{3 x}\) Analog inputs & Operating range & Resolution & Accuracy & Sampling & Max load & Impedance \\
\hline \begin{tabular}{c} 
Used as \\
temperature \\
sensor input
\end{tabular} & -50 to \(+150^{\circ} \mathrm{C}\) & 11 bits & \begin{tabular}{c}
\(-50^{\circ} \mathrm{C}\) \\
\(\pm 1 \mathrm{Kelvin}\) \\
\(+150^{\circ} \mathrm{C}\) \\
\(\pm 2 \mathrm{Kelvin}\)
\end{tabular} & 3 Hz & - & - \\
\hline \begin{tabular}{c} 
Used as \\
voltage input
\end{tabular} & \(0-10 \mathrm{VDC}\) & 10 bits & \begin{tabular}{c}
\(0.2 \%\) of full \\
scale at cal. \\
temperature
\end{tabular} & 2.4 Hz & \begin{tabular}{c} 
\\
continuously
\end{tabular} & \begin{tabular}{c} 
Approximately \\
\(5 \mathrm{k} \Omega\)
\end{tabular} \\
\hline
\end{tabular}

When used for voltage, analog inputs are scalable by parameters for each input.

When used for temperature sensor, analog inputs scaling is preset to necessary signal level for specified temperature span.

When analog inputs are used for temperature sensors, it is possible to read out feedback value in both \({ }^{\circ} \mathrm{C}\) and \({ }^{\circ} \mathrm{F}\).

When operating with temperature sensors, maximum cable length to connect sensors is 80 m non-screened / non-twisted wires.

\section*{Analog outputs - terminal X42/7-12}

Parameter group for read out and write: 18-3*. See also IVS 102 Drive Programming Guide
Parameter groups for set-up: 26-4*, 26-5* and 26-6*. See also IVS 102 Drive Programming Guide
\begin{tabular}{|l|l|l|l|l|}
\hline \(\mathbf{3} \mathbf{x}\) Analog outputs & Output signal level & Resolution & Linearity & Max load \\
\hline Volt & \(0-10\) VDC & 11 bits & \(1 \%\) of full scale & 1 mA \\
\hline
\end{tabular}

Analog outputs are scalable by parameters for each output.

The function assigned is selectable via a parameter and have same options as for analog outputs on control card.

For a more detailed description of parameters, please refer to the IVS 102 Drive Programming Guide.

\section*{Real-time clock (RTC) with back-up}

The data format of RTC includes year, month, date, hour, minutes and weekday.

Accuracy of clock is better than \(\pm 20 \mathrm{ppm}\) at \(25^{\circ} \mathrm{C}\).

The built-in lithium back-up battery lasts on average for minimum 10 years, when frequency converter is operating at \(40{ }^{\circ} \mathrm{C}\) ambient temperature. If battery pack back-up fails, analog I/O option must be exchanged.

\subsection*{3.1.10 Frame Size F Panel Options}

\section*{Space Heaters and Thermostat}

Mounted on the cabinet interior of frame size F frequency converters, space heaters controlled via automatic thermostat help control humidity inside the enclosure, extending the lifetime of drive components in damp environments. The thermostat default settings turn on the heaters at \(10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)\) and turn them off at \(15.6^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)\).

\section*{Cabinet Light with Power Outlet}

A light mounted on the cabinet interior of frame size F frequency converters increase visibility during servicing and maintenance. The housing the light includes a power outlet for temporarily powering tools or other devices, available in two voltages:
- \(230 \mathrm{~V}, 50 \mathrm{~Hz}, 2.5 \mathrm{~A}, \mathrm{CE} / E N E C\)
- \(120 \mathrm{~V}, 60 \mathrm{~Hz}, 5 \mathrm{~A}, \mathrm{UL} / \mathrm{cUL}\)

\section*{Transformer Tap Setup}

If the Cabinet Light \& Outlet and/or the Space Heaters \& Thermostat are installed Transformer T1 requires it taps to be set to the proper input voltage. A 380-480/500 V380-480 V drive will initially be set to the 525 V tap and a \(525-690 \mathrm{~V}\) drive will be set to the 690 V tap to insure no over-voltage of secondary equipment occurs if the tap is not changed prior to power being applied. See the table below to set the proper tap at terminal T1 located in the rectifier cabinet. For location in the drive, see illustration of rectifier in the Power Connections section.
\begin{tabular}{|ll|}
\hline Input Voltage Range & Tap to Select \\
\hline \(380 \mathrm{~V}-440 \mathrm{~V}\) & 400 V \\
\(441 \mathrm{~V}-490 \mathrm{~V}\) & 460 V \\
\(491 \mathrm{~V}-550 \mathrm{~V}\) & 525 V \\
\hline \(551 \mathrm{~V}-625 \mathrm{~V}\) & 575 V \\
\(626 \mathrm{~V}-660 \mathrm{~V}\) & 660 V \\
\hline \(661 \mathrm{~V}-690 \mathrm{~V}\) & 690 V \\
\hline
\end{tabular}

\section*{NAMUR Terminals}

NAMUR is an international association of automation technology users in the process industries, primarily chemical and pharmaceutical industries in Germany. Selection of this option provides terminals organized and labeled to the specifications of the NAMUR standard for drive input and output terminals. This requires MCB 112 PTC Thermistor Card and MCB 113 Extended Relay Card.

\section*{RCD (Residual Current Device)}

Uses the core balance method to monitor ground fault currents in grounded and high-resistance grounded systems (TN and TT systems in IEC terminology). There is a pre-warning ( \(50 \%\) of main alarm set-point) and a main alarm set-point. Associated with each set-point is an SPDT alarm relay for external use. Requires an external "window-type" current transformer (supplied and installed by customer).
- Integrated into the drive's safe-stop circuit
- IEC 60755 Type B device monitors AC, pulsed DC, and pure DC ground fault currents
- LED bar graph indicator of the ground fault current level from \(10-100 \%\) of the set-point
- Fault memory
- TEST / RESET button

\section*{Insulation Resistance Monitor (IRM)}

Monitors the insulation resistance in ungrounded systems (IT systems in IEC terminology) between the system phase conductors and ground. There is an ohmic pre-warning and a main alarm set-point for the insulation level. Associated with each set-point is an SPDT alarm relay for external use. Note: only one insulation resistance monitor can be connected to each ungrounded (IT) system.
- Integrated into the drive's safe-stop circuit
- LCD display of the ohmic value of the insulation resistance
- Fault Memory
- INFO, TEST, and RESET buttons

\section*{IEC Emergency Stop with Pilz Safety Relay}

Includes a redundant 4-wire emergency-stop push-button mounted on the front of the enclosure and a Pilz relay that monitors it in conjunction with the drive's safe-stop circuit and the mains contactor located in the options cabinet.

\section*{Manual Motor Starters}

Provide 3-phase power for electric blowers often required for larger motors. Power for the starters is provided from the load side of any supplied contactor, circuit breaker, or disconnect switch. Power is fused before each motor starter, and is off when the incoming power to the drive is off. Up to two starters are allowed (one if a 30A, fuse-protected circuit is ordered). Integrated into the drive's safe-stop circuit.

Unit features include:
- Operation switch (on/off)
- Short-circuit and overload protection with test function
- Manual reset function

\section*{30 Ampere, Fuse-Protected Terminals}
- 3-phase power matching incoming mains voltage for powering auxiliary customer equipment
- Not available if two manual motor starters are selected
- Terminals are off when the incoming power to the drive is off
- Power for the fused protected terminals will be provided from the load side of any supplied contactor, circuit breaker, or disconnect switch.

\section*{24 VDC Power Supply}
- 5 amp, \(120 \mathrm{~W}, 24\) VDC
- Protected against output over-current, overload, short circuits, and over-temperature
- For powering customer-supplied accessory devices such as sensors, PLC I/O, contactors, temperature probes, indicator lights, and/or other electronic hardware
- Diagnostics include a dry DC-ok contact, a green DC-ok LED, and a red overload LED

\section*{External Temperature Monitoring}

Designed for monitoring temperatures of external system components, such as the motor windings and/or bearings. Includes eight universal input modules plus two dedicated thermistor input modules. All ten modules are integrated into the drive's safe-stop circuit and can be monitored via a fieldbus network (requires the purchase of a separate module/bus coupler).

\section*{Universal inputs (8)}

Signal types:
- RTD inputs (including Pt100), 3-wire or 4-wire
- Thermocouple
- Analog current or analog voltage

Additional features:
- One universal output, configurable for analog voltage or analog current
- Two output relays (N.O.)
- Dual-line LC display and LED diagnostics
- Sensor lead wire break, short-circuit, and incorrect polarity detection
- Interface setup software

\section*{Dedicated thermistor inputs (2)}

Features:
- Each module capable of monitoring up to six thermistors in series
- Fault diagnostics for wire breakage or short-circuits of sensor leads
- ATEX/UL/CSA certification
- A third thermistor input can be provided by the PTC Thermistor Option Card MCB 112, if necessary

\subsection*{3.1.11 Brake Resistors}

In applications where the motor is used as a brake, energy is generated in the motor and send back into the frequency converter. If the energy can not be transported back to the motor it will increase the voltage in the converter DC-line. In applications with frequent braking and/or high inertia loads this increase may lead to an over voltage trip in the converter and finally a shut down. Brake resistors are used to dissipate the excess energy resulting from the regenerative braking. The resistor is selected in respect to its ohmic value, its power dissipation rate and its physical size. Danfoss offers a wide variety of different resistors that are specially designed to our frequency converters. See the section Control with brake function for the dimensioning of brake resistors. Code numbers can be found in the section How to order.

\subsection*{3.1.12 Remote Mounting Kit for LCP}

The LCP can be moved to the front of a cabinet by using the remote build in kit. The enclosure is the IP65. The fastening screws must be tightened with a torque of max. 1 Nm .


Ordering no. 130B1113


Illustration 3.5: LCP Kit with graphical LCP, fasteners, 3 m cable and Illustration 3.6: LCP Kit with numerical LCP, fasternes and gasket. gasket.

LCP Kit without LCP is also available. Ordering number: 130B1117
For IP55 units the ordering number is 130B1129.


130BA139.11

\subsection*{3.1.13 IP 21/IP 4X/ TYPE 1 Enclosure Kit}

IP 21/IP 4X top/ TYPE 1 is an optional enclosure element available for IP 20 Compact units, enclosure size A2-A3, B3+B4 and C3+C4. If the enclosure kit is used, an IP 20 unit is upgraded to comply with enclosure IP \(21 / 4 \mathrm{X}\) top/TYPE 1.

The IP 4X top can be applied to all standard IP 20 IVS 102 Drive variants.

\begin{tabular}{|lccc|}
\hline Dimensions & \multicolumn{3}{|c|}{} \\
Enclosure & Height (mm) & Width (mm) & Depth (mm) \\
type & A & B & C* \\
A2 & 372 & 90 & 205 \\
A3 & 372 & 130 & 205 \\
B3 & 475 & 165 & 249 \\
B4 & 670 & 255 & 246 \\
C3 & 755 & 329 & 337 \\
\hline C4 & 950 & 391 & 337 \\
* If option A/B is used, the depth will increase (see section Me- \\
chanical Dimensions for details) & & \\
\hline
\end{tabular}



3

\footnotetext{
Side-by-side installation is not possible when using the IP 21/ IP 4X/ TYPE 1 Enclosure Kit
}

\subsection*{3.1.14 Output Filters}

The high speed switching of the frequency converter produces some secondary effects, which influence the motor and the enclosed environment. These side effects are addressed by two different filter types, the du/dt and the Sine-wave filter.

\section*{du/dt filters}

Motor insulation stresses are often caused by the combination of rapid voltage and current increase. The rapid energy changes can also be reflected back to the DC-line in the inverter and cause shut down. The du/dt filter is designed to reduce the voltage rise time/the rapid energy change in the motor and by that intervention avoid premature aging and flashover in the motor insulation. \(\mathrm{du} / \mathrm{dt}\) filters have a positive influence on the radiation of magnetic noise in the cable that connects the drive to the motor. The voltage wave form is still pulse shaped but the du/dt ratio is reduced in comparison with the installation without filter.

\section*{Sine-wave filters}

Sine-wave filters are designed to let only low frequencies pass. High frequencies are consequently shunted away which results in a sinusoidal phase to phase voltage waveform and sinusoidal current waveforms.
With the sinusoidal waveforms the use of special frequency converter motors with reinforced insulation is no longer needed. The acoustic noise from the motor is also damped as a consequence of the wave condition.

Besides the features of the du/dt filter, the sine-wave filter also reduces insulation stress and bearing currents in the motor thus leading to prolonged motor lifetime and longer periods between services. Sine-wave filters enable use of longer motor cables in applications where the motor is installed far from the drive. The length is unfortunately limited because the filter does not reduce leakage currents in the cables.

\section*{4 How to Order}

\subsection*{4.1.1 Drive Configurator}

It is possible to design a frequency converter according to the application requirements by using the ordering number system.

For the frequency converter, you can order standard drives and drives with integral options by sending a type code string describing the product a to the local Danfoss sales office, i.e.:

FC-102P18KT4E21H1XGCXXXSXXXXAGBKCXXXXXDX

The meaning of the characters in the string can be located in the pages containing the ordering numbers in the chapter How to Select Your IVS 102 In the example above, a Profibus LON works option and a General purpose I/O option is included in the frequency converter.

Ordering numbers for frequency converter standard variants can also be located in the chapter How to Select Your IVS 102.

From the Internet based Drive Configurator, you can configure the right frequency converter for the right application and generate the type code string. The Drive Configurator will automatically generate an eight-digit sales number to be delivered to your local sales office.
Furthermore, you can establish a project list with several products and send it to a Danfoss sales representative.

The Drive Configurator can be found on the global Internet site: www.danfoss.com/drives.

\section*{Example of Drive Configurator interface set-up:}

The numbers shown in the boxes refer to the letter/figure number of the Type Code String - read from left to right. See next page!


\subsection*{4.1.2 Type Code String low and medium power}

\begin{tabular}{|l|l|l|}
\hline Description & Pos & Possible choice \\
\hline Product group \& FC Series & \(1-6\) & FC 102 \\
\hline Power rating & \(8-10\) & 1.1- 90 kW (P1K1 - P90K) \\
\hline Number of phases & 11 & Three phases (T) \\
\hline Mains voltage & \(11-12\) & \begin{tabular}{l} 
T 2: 200-240 VAC \\
T 4: 380-480 VAC \\
T 6: 525-600 VAC
\end{tabular} \\
\hline Enclosure & \begin{tabular}{l} 
E20: IP20 \\
E21: IP 21/NEMA Type 1 \\
E55: IP 55/NEMA Type 12 \\
E66: IP66 \\
P21: IP21/NEMA Type 1 w/backplate \\
P55: IP55/NEMA Type 12 w/backplate
\end{tabular} \\
\hline RFI filter & \(13-15\) & \begin{tabular}{l} 
H1: RFI filter class A1/B \\
H2: RFI filter class A2 \\
H3: RFI filter class A1/B (reduced cable length) \\
Hx: No RFI filter
\end{tabular} \\
\hline Brake & \(16-17\) & \begin{tabular}{l} 
X: No brake chopper included \\
B: Brake chopper included
\end{tabular} \\
\hline T: Safe Stop \\
U: Safe + brake
\end{tabular}

Table 4.1: Type code description.

The various Options and Accessories are described further in the IVS 102 Drive Design Guide, MG.11.BX.YY.

\subsection*{4.1.3 Type Code String High Power}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Ordering type code frame sizes D and E} \\
\hline Description & Pos & Possible choice \\
\hline Product group+series & 1-6 & FC 102 \\
\hline Power rating & 8-10 & 45-560 kW \\
\hline Phases & 11 & Three phases ( T ) \\
\hline Mains voltage & \[
\begin{aligned}
& 11- \\
& 12 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
T 4: 380-500 VAC \\
T 7: 525-690 VAC
\end{tabular} \\
\hline Enclosure & \[
\begin{aligned}
& 13- \\
& 15
\end{aligned}
\] & \begin{tabular}{l}
E00: IP00/Chassis \\
C00: IPOO/Chassis w/ stainless steel back channel \\
E0D: IP00/Chassis, D3 P37K-P75K, T7 \\
COD: IP00/Chassis w/ stainless steel back channel, D3 P37K-P75K, T7 \\
E21: IP 21/ NEMA Type 1 \\
E54: IP 54/ NEMA Type 12 \\
E2D: IP 21/ NEMA Type 1, D1 P37K-P75K, T7 \\
E5D: IP 54/ NEMA Type 12, D1 P37K-P75K, T7 \\
E2M: IP 21/ NEMA Type 1 with mains shield \\
E5M: IP 54/ NEMA Type 12 with mains shield
\end{tabular} \\
\hline RFI filter & \[
\begin{aligned}
& 16- \\
& 17
\end{aligned}
\] & \begin{tabular}{l}
H2: RFI filter, class A2 (standard) \\
H4: RFI filter class A1 \({ }^{1)}\) \\
H6: RFI filter Maritime use \({ }^{2)}\)
\end{tabular} \\
\hline Brake & 18 & \begin{tabular}{l}
B: Brake IGBT mounted \\
X: No brake IGBT \\
R: Regeneration terminals (E frames only)
\end{tabular} \\
\hline Display & 19 & \begin{tabular}{l}
G: Graphical Local Control Panel LCP \\
N: Numerical Local Control Panel (LCP) \\
X: No Local Control Panel (D frames IP00 and IP 21 only)
\end{tabular} \\
\hline Coating PCB & 20 & \begin{tabular}{l}
C: Coated PCB \\
X. No coated PCB (D frames 380-480/500 V only)
\end{tabular} \\
\hline Mains option & 21 & \begin{tabular}{l}
X: No mains option \\
3: Mains disconnect and Fuse \\
5: Mains disconnect, Fuse and Load sharing \\
7: Fuse \\
A: Fuse and Load sharing \\
D: Load sharing
\end{tabular} \\
\hline Adaptation & 22 & Reserved \\
\hline Adaptation & 23 & Reserved \\
\hline Software release & \[
\begin{aligned}
& 24- \\
& 27 \\
& \hline
\end{aligned}
\] & Actual software \\
\hline Software language & 28 & \\
\hline A options & 29-30 & \begin{tabular}{l}
AX: No options \\
AO: MCA 101 Profibus DP V1 \\
A4: MCA 104 DeviceNet
\end{tabular} \\
\hline B options & 31-32 & \begin{tabular}{l}
BX: No option \\
BK: MCB 101 General purpose I/O option \\
BP: MCB 105 Relay option \\
BO: MCB 109 Analog I/O option
\end{tabular} \\
\hline Co options & 33-34 & CX: No options \\
\hline \(\mathrm{C}_{1}\) options & 35 & X: No options \\
\hline C option software & 36-37 & XX: Standard software \\
\hline D options & 38-39 & DX: No option DO: DC backup \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
The various options are described further in this Design Guide. \\
1): Available for all D frames. E frames 380-480/500 VAC only \\
2) Consult factory for applications requiring maritime certification
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Ordering type code frame size F} \\
\hline Description & Pos & Possible choice \\
\hline Product group & 1-3 & \\
\hline Drive series & 4-6 & \\
\hline Power rating & 8-10 & 500-1400 kW \\
\hline Phases & 11 & Three phases ( T ) \\
\hline Mains voltage & \[
\begin{array}{|l|l|}
\hline 11- \\
12 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { T 5: 380-500 VAC } \\
& \text { T 7: } 525-690 \text { VAC }
\end{aligned}
\] \\
\hline Enclosure & \[
\begin{aligned}
& 13- \\
& 15
\end{aligned}
\] & \begin{tabular}{l}
E21: IP 21/ NEMA Type 1 \\
E54: IP 54/ NEMA Type 12 \\
L2X: IP21/NEMA 1 with cabinet light \& IEC 230 V power outlet \\
L5X: IP54/NEMA 12 with cabinet light \& IEC 230V power outlet \\
L2A: IP21/NEMA 1 with cabinet light \& NAM 115 V power outlet \\
L5A: IP54/NEMA 12 with cabinet light \& NAM 115V power outlet \\
H21: IP21 with space heater and thermostat \\
H54: IP54 with space heater and thermostat \\
R2X: IP21/NEMA1 with space heater, thermostat, light \& IEC 230V outlet \\
R5X: IP54/NEMA12 with space heater, thermostat, light \& IEC 230 V outlet \\
R2A: IP21/NEMA1 with space heater, thermostat, light, \& NAM 115 V outlet \\
R5A: IP54/NEMA12 with space heater, thermostat, light, \& NAM 115 V outlet
\end{tabular} \\
\hline RFI filter & \[
\begin{aligned}
& \hline 16- \\
& 17
\end{aligned}
\] & \begin{tabular}{l}
H2: RFI filter, class A2 (standard) \\
H4: RFI filter, class A1 \({ }^{2,3)}\) \\
HE: RCD with Class A2 RFI filter \({ }^{2)}\) \\
HF: RCD with class A1 RFI filter \({ }^{2,3)}\) \\
HG: IRM with Class A2 RFI filter \({ }^{2}\) ) \\
HH: IRM with class A1 RFI filter \({ }^{2,3)}\) \\
HJ: NAMUR terminals and class A2 RFI filter \({ }^{1 \text { ) }}\) \\
HK: NAMUR terminals with class A1 RFI filter \({ }^{1}, 2,3\) ) \\
HL: RCD with NAMUR terminals and class A2 RFI filter \({ }^{1,2)}\) \\
HM: RCD with NAMUR terminals and class A1 RFI filter \({ }^{1,2,3}\) ) \\
HN: IRM with NAMUR terminals and class A2 RFI filter \({ }^{1,2)}\) \\
HP: IRM with NAMUR terminals and class A1 RFI filter \({ }^{1,2,3 \text { ) }}\)
\end{tabular} \\
\hline Brake & 18 & \begin{tabular}{l}
B: Brake IGBT mounted \\
X: No brake IGBT \\
R: Regeneration terminals \\
M: IEC Emergency stop push-button (with Pilz safety relay) \({ }^{4)}\) \\
N: IEC Emergency stop push-button with brake IGBT and brake terminals \({ }^{4)}\) \\
P: IEC Emergency stop push-button with regeneration terminals \({ }^{4}\)
\end{tabular} \\
\hline Display & 19 & G: Graphical Local Control Panel LCP \\
\hline Coating PCB & 20 & C: Coated PCB \\
\hline Mains option & 21 & \begin{tabular}{l}
X: No mains option \\
\({ }^{32}\) ): Mains disconnect and Fuse \\
\({ }^{2}\) ): Mains disconnect, Fuse and Load sharing \\
7: Fuse \\
A: Fuse and Load sharing \\
D: Load sharing \\
E: Mains disconnect, contactor \& fuses \({ }^{2}\) ) \\
F: Mains circuit breaker, contactor \& fuses \({ }^{2)}\) \\
G: Mains disconnect, contactor, loadsharing terminals \& fuses \({ }^{2)}\) \\
H: Mains circuit breaker, contactor, loadsharing terminals \& fuses \({ }^{2)}\) \\
J : Mains circuit breaker \& fuses \({ }^{2)}\) \\
K: Mains circuit breaker, loadsharing terminals \& fuses \({ }^{2)}\)
\end{tabular} \\
\hline A options & 29-30 & \begin{tabular}{l}
AX: No options \\
A0: MCA 101 Profibus DP V1 \\
A4: MCA 104 DeviceNet \\
AN: MCA 121 Ethernet IP
\end{tabular} \\
\hline B options & 31-32 & \begin{tabular}{l}
BX: No option \\
BK: MCB 101 General purpose I/O option \\
BP: MCB 105 Relay option \\
BO: MCB 109 Analog I/O option
\end{tabular} \\
\hline Co options & 33-34 & CX: No options \\
\hline \(\mathrm{C}_{1}\) options & 35 & X: No options \\
\hline C option software & 36-37 & XX: Standard software \\
\hline D options & 38-39 & DX: No option DO: DC backup \\
\hline \multicolumn{3}{|l|}{The various options are described further in this Design Guide.} \\
\hline
\end{tabular}

\subsection*{4.2 Ordering Numbers}

\subsection*{4.2.1 Ordering Numbers: Options and Accessories}
\begin{tabular}{|c|c|c|c|}
\hline Type & Description & Ordering no. & Comments \\
\hline \multicolumn{4}{|l|}{Miscellaneous hardware I} \\
\hline DC link connector & Terminal block for DC link connnection on A2/A3 & 130B1064 & \\
\hline IP 21/4X top/TYPE 1 kit & IP21/NEMA1 Top + bottomA2 & 130 B 1122 & \\
\hline IP 21/4X top/TYPE 1 kit & IP21/NEMA1 Top + bottomA3 & 130B1123 & \\
\hline IP 21/4X top/TYPE 1 kit & IP21/NEMA1 Top + bottom B3 & 130B1187 & \\
\hline IP 21/4X top/TYPE 1 kit & IP21/NEMA1 Top + bottom B4 & 130B1189 & \\
\hline IP 21/4X top/TYPE 1 kit & IP21/NEMA1 Top + bottom C3 & 130B1191 & \\
\hline IP 21/4X top/TYPE 1 kit & IP21/NEMA1 Top + bottom C4 & 130B1193 & \\
\hline IP21/4X top & IP21 Top Cover A2 & 130B1132 & \\
\hline IP21/4X top & IP21 Top Cover A3 & 130B1133 & \\
\hline IP 21/4X top & IP21 Top Cover B3 & 130B1188 & \\
\hline IP 21/4X top & IP21 Top Cover B4 & 130B1190 & \\
\hline IP 21/4X top & IP21 Top Cover C3 & 130 B 1192 & \\
\hline IP 21/4X top & IP21 Top Cover C4 & 130B1194 & \\
\hline Panel Through Mount Kit & Enclosure, frame size A5 & 130B1028 & \\
\hline Panel Through Mount Kit & Enclosure, frame size B1 & 130B1046 & \\
\hline Panel Through Mount Kit & Enclosure, frame size B2 & 130B1047 & \\
\hline Panel Through Mount Kit & Enclosure, frame size C1 & 130B1048 & \\
\hline Panel Through Mount Kit & Enclosure, frame size C2 & 130B1049 & \\
\hline Profibus D-Sub 9 & Connector kit for IP20 & 130 B 1112 & \\
\hline Profibus top entry kit & Top entry kit for Profibus connection - D + E enclosures & 176 F 1742 & \\
\hline Terminal blocks & Screw terminal blocks for replacing spring loaded terminals 1 pc 10 pin 1 pc 6 pin and 1 pc 3 pin connectors & 130 B 1116 & \\
\hline Backplate & A5 IP55 / NEMA 12 & 130B1098 & \\
\hline Backplate & B1 IP21 / IP55 / NEMA 12 & 130B3383 & \\
\hline Backplate & B2 IP21 / IP55 / NEMA 12 & 130B3397 & \\
\hline Backplate & C1 IP21 / IP55 / NEMA 12 & 130 B 3910 & \\
\hline Backplate & C2 IP21 / IP55 / NEMA 12 & 130 B 3911 & \\
\hline Backplate & A5 IP66 & 130 B 3242 & \\
\hline Backplate & B1 IP66 & 130B3434 & \\
\hline Backplate & B2 IP66 & 130B3465 & \\
\hline Backplate & C1 IP66 & 130B3468 & \\
\hline Backplate & C2 IP66 & 130B3491 & \\
\hline \multicolumn{4}{|l|}{LCP's and kits} \\
\hline LCP 101 & Numerical Local Control Panel (NLCP) & 130B1124 & \\
\hline LCP 102 & Graphical Local Control Panel (GLCP) & 130 B 1107 & \\
\hline LCP cable & Separate LCP cable, 3 m & \(175 Z 0929\) & \\
\hline LCP kit & Panel mounting kit including graphical LCP, fasteners, 3 m cable and gasket & 130 B 1113 & \\
\hline LCP kit & Panel mounting kit including numerical LCP, fasteners and gasket & 130 B 1114 & \\
\hline LCP kit & Panel mounting kit for all LCPs including fasteners, 3 m cable and gasket & 130 B 1117 & \\
\hline LCPkit & Front mounting kit, IP55 enclosures & 130B1129 & \\
\hline LCP kit & Panel mounting kit for all LCPs including fasteners and gasket - without cable & 130 B 1170 & \\
\hline
\end{tabular}

\footnotetext{
Table 4.2: Options can be ordered as factory built-in options, see ordering information.
}


For information on fieldbus and application option compatibility with older software versions, please contact your Danfoss supplier.
\begin{tabular}{|c|c|c|c|}
\hline Type & Description & & \\
\hline \multicolumn{2}{|l|}{Spare Parts} & Ordering no. & Comments \\
\hline Control board FC & With Safe Stop Function & 130B1150 & \\
\hline Control board FC & Without Safe Stop Function & 130B1151 & \\
\hline Fan A2 & Fan, frame size A2 & 130B1009 & \\
\hline Fan A3 & Fan, frame size A3 & 130B1010 & \\
\hline Fan A5 & Fan, frame size A5 & 130 B 1017 & \\
\hline Fan B1 & Fan external, frame size B1 & 130B3407 & \\
\hline Fan B2 & Fan external, frame size B2 & 130 B 3406 & \\
\hline Fan B3 & Fan external, frame size B3 & 130B3563 & \\
\hline Fan B4 & Fan external, 18.5/22 kW & 130B3699 & \\
\hline Fan B4 & Fan external \(22 / 30 \mathrm{~kW}\) & 130B3701 & \\
\hline Fan C1 & Fan external, frame size C1 & 130B3865 & \\
\hline Fan C2 & Fan external, frame size C2 & 130B3867 & \\
\hline Fan C3 & Fan external, frame size C3 & \(130 \mathrm{B4} 492\) & \\
\hline Fan C4 & Fan external, frame size C4 & 130B4294 & \\
\hline \multicolumn{4}{|l|}{Miscellaneous hardware II} \\
\hline Accessory bag A2 & Accessory bag, frame size A2 & 130B1022 & \\
\hline Accessory bag A3 & Accessory bag, frame size A3 & 130B1022 & \\
\hline Accessory bag A5 & Accessory bag, frame size A5 & 130B1023 & \\
\hline Accessory bag B1 & Accessory bag, frame size B1 & 130 B 2060 & \\
\hline Accessory bag B2 & Accessory bag, frame size B2 & 130B2061 & \\
\hline Accessory bag B3 & Accessory bag, frame size B3 & 130B0980 & \\
\hline Accessory bag B4 & Accessory bag, frame size B4 & 130 B 1300 & Small \\
\hline Accessory bag B4 & Accessory bag, frame size B4 & 130B1301 & Big \\
\hline Accessory bag C1 & Accessory bag, frame size C1 & 130B0046 & \\
\hline Accessory bag C2 & Accessory bag, frame size C2 & \(130 \mathrm{B0047}\) & \\
\hline Accessory bag C3 & Accessory bag, frame size C3 & 130B0981 & \\
\hline Accessory bag C4 & Accessory bag, frame size C4 & 130B0982 & Small \\
\hline Accessory bag C4 & Accessory bag, frame size C4 & 130B0983 & Big \\
\hline
\end{tabular}

\subsection*{4.2.2 Ordering Numbers: High Power Option Kits}
\begin{tabular}{|c|c|c|c|}
\hline Kit & Description & Ordering Number & Instruction Number \\
\hline \multirow[t]{3}{*}{NEMA-3R (Rittal Enclosures)} & D3 Frame & \(176 F 4600\) & 175R5922 \\
\hline & D4 Frame & \(176 F 4601\) & \\
\hline & E2 Frame & 176F1852 & \\
\hline \multirow[t]{3}{*}{NEMA-3R (Welded Enclosures)} & D3 Frame & \(176 F 0296\) & 175R1068 \\
\hline & D4 Frame & \(176 \mathrm{FO295}\) & \\
\hline & E2 Frame & 176 F 0298 & \\
\hline Pedestal & D Frames & 176F1827 & 175R5642 \\
\hline Back Channel Duct Kit & D3 1800 mm & 176F1824 & 175R5640 \\
\hline \multirow[t]{5}{*}{(Top \& Bottom)} & D4 1800 mm & 176F1823 & \\
\hline & D3 2000 mm & 176F1826 & \\
\hline & D4 2000 mm & 176F1825 & \\
\hline & E2 2000 mm & 176F1850 & \\
\hline & E2 2200 mm & 176F0299 & \\
\hline Back Channel Duct Kit & D3/D4 Frames & 176F1775 & 175 R 1107 \\
\hline (Top Only) & E2 Frame & \(176 F 1776\) & \\
\hline IP00 Top \& Bottom Covers & D3/D4 Frames & 176F1862 & 175 R 1106 \\
\hline (Welded Enclosures) & E2 Frame & 176F1861 & \\
\hline IP00 Top \& Bottom Covers & D3 Frames & 176F1781 & 175 R 0076 \\
\hline \multirow[t]{2}{*}{(Rittal Enclosures)} & D4 Frames & 176F1782 & \\
\hline & E2 Frame & 176F1783 & \\
\hline \multirow[t]{3}{*}{IP00 Motor Cable Clamp} & D3 Frame & 176F1774 & 175R1109 \\
\hline & D4 Frame & 176F1746 & \\
\hline & E2 Frame & 176F1745 & \\
\hline IP00 Terminal Cover & D3/D4 Frame & 176F1779 & 175R1108 \\
\hline \multirow[t]{2}{*}{Mains Shield} & D1/D2 Frames & 176 F 0799 & 175 R 5923 \\
\hline & E1 Frame & 176F1851 & \\
\hline Input Plates & See Instr & & \(175 R 5795\) \\
\hline \multirow[t]{2}{*}{Loadshare} & D1/D3 Frame & 17678456 & \(175 R 5637\) \\
\hline & D2/D4 Frame & 176F8455 & \\
\hline Top Entry Sub D or Shield Termination & D3/D4/E2 Frames & 176F1742 & 175 R 5964 \\
\hline
\end{tabular}

\subsection*{4.2.3 Ordering Numbers: Harmonic Filters}

Harmonic filters are used to reduce mains harmonics.
- AHF 010: 10\% current distortion
- AHF 005: 5\% current distortion
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{380-415 VAC, 50 Hz} \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {AHF,N }}[\mathrm{A}]\)} & \multirow[t]{2}{*}{Typical Motor Used [kW]} & \multicolumn{2}{|c|}{Danfoss ordering number} & \multirow[b]{2}{*}{Frequency converter size} \\
\hline & & AHF 005 & AHF 010 & \\
\hline 10 & 1.1-4 & \(175 \mathrm{G6600}\) & 175G6622 & P1K1, P4K0 \\
\hline 19 & 5.5-7.5 & 175G6601 & 175G6623 & P5K5 - P7K5 \\
\hline 26 & 11 & 175G6602 & 175G6624 & P11K \\
\hline 35 & 15-18.5 & 175G6603 & 175G6625 & P15K - P18K \\
\hline 43 & 22 & 175G6604 & 175G6626 & P22K \\
\hline 72 & 30-37 & 175G6605 & \(175 \mathrm{G6627}\) & P30K - P37K \\
\hline 101 & 45-55 & 175G6606 & 175G6628 & P45K - P55K \\
\hline 144 & 75 & 175G6607 & 175G6629 & P75K \\
\hline 180 & 90 & 175G6608 & 175G6630 & P90K \\
\hline 217 & 110 & 175G6609 & 175G6631 & P110 \\
\hline 289 & 132 & 175G6610 & 175G6632 & P132-P160 \\
\hline 324 & 160 & 175G6611 & 175G6633 & \\
\hline 370 & 200 & 175G6688 & 175G6691 & P200 \\
\hline 506 & 250 & \[
\begin{array}{r}
175 \mathrm{G} 6609 \\
+17566610 \\
\hline
\end{array}
\] & \[
\begin{gathered}
175 \mathrm{G} 6631 \\
+175 \mathrm{G} 6632
\end{gathered}
\] & P250 \\
\hline 578 & 315 & 2x175G6610 & 2x 175G6632 & P315 \\
\hline 648 & 355 & 2x175G6611 & 2x175G6633 & P355 \\
\hline 694 & 400 & \[
\begin{gathered}
175 \mathrm{G} 6611 \\
+175 \mathrm{G} 6688
\end{gathered}
\] & \[
\begin{gathered}
175 \mathrm{G} 6633 \\
+175 \mathrm{G} 691
\end{gathered}
\] & P400 \\
\hline 740 & 450 & 2x175G6688 & 2x175G6691 & P450 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{380-415 VAC, 60 Hz} \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {AHF,N }}\) [A]} & \multirow[t]{2}{*}{Typical Motor Used [HP]} & \multicolumn{2}{|c|}{Danfoss ordering number} & \multirow[b]{2}{*}{Frequency converter size} \\
\hline & & AHF 005 & AHF 010 & \\
\hline 10 & 1.1-4 & 130 B 2540 & 130B2541 & P1K1 - P4K0 \\
\hline 19 & 5.5-7.5 & 130B2460 & 130B2472 & P5K5 - P7K5 \\
\hline 26 & 11 & 130B2461 & 130B2473 & P11K \\
\hline 35 & 15-18.5 & 130B2462 & 130B2474 & P15K, P18K \\
\hline 43 & 22 & 130B2463 & 130B2475 & P22K \\
\hline 72 & 30-37 & 130B2464 & 130B2476 & P30K - P37K \\
\hline 101 & 45-55 & 130B2465 & 130B2477 & P45K - P55K \\
\hline 144 & 75 & 130B2466 & 130B2478 & P75K \\
\hline 180 & 90 & 130B2467 & 130B2479 & P90K \\
\hline 217 & 110 & 130B2468 & 130B2480 & P110 \\
\hline 289 & 132 & 130B2469 & 130B2481 & P132 \\
\hline 324 & 160 & 130B2470 & 130B2482 & P160 \\
\hline 370 & 200 & 130B2471 & 130B2483 & P200 \\
\hline 506 & 250 & \[
\begin{gathered}
130 \mathrm{~B} 2468 \\
+130 \mathrm{~B} 2469 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
130 \mathrm{~B} 2480 \\
+130 \mathrm{~B} 2481 \\
\hline
\end{gathered}
\] & P250 \\
\hline 578 & 315 & 2x 130B2469 & 2x130B2481 & P315 \\
\hline 648 & 355 & 2x130B2470 & 2x130B2482 & P355 \\
\hline 694 & 400 & \[
\begin{gathered}
130 \text { B2470 } \\
+130 \text { B2471 }
\end{gathered}
\] & \[
\begin{gathered}
130 \mathrm{~B} 2482 \\
+130 \mathrm{~B} 2483
\end{gathered}
\] & P400 \\
\hline 740 & 450 & 2x130B2471 & 130B2483 & P450 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{440-480 VAC, 60 Hz} \\
\hline \multirow[t]{2}{*}{IAHF,N [A]} & \multirow[t]{2}{*}{Typical Motor Used [HP]} & \multicolumn{2}{|c|}{Danfoss ordering number} & \multirow[t]{2}{*}{Frequency converter size} \\
\hline & & AHF 005 & AHF 010 & \\
\hline 10 & 1.5-7.5 & 130B2538 & 130B2539 & P1K1 - P5K5 \\
\hline 19 & 10-15 & 175G6612 & 175G6634 & P7K5 - P11K \\
\hline 26 & 20 & 175G6613 & 175G6635 & P15K \\
\hline 35 & 25-30 & \(175 \mathrm{G6614}\) & 175G6636 & P18K - P22K \\
\hline 43 & 40 & 175G6615 & 175G6637 & P30K \\
\hline 72 & 50-60 & \(175 \mathrm{G6616}\) & 175G6638 & P37K - P45K \\
\hline 101 & 75 & 175G6617 & 175G6639 & P55K \\
\hline 144 & 100-125 & \(175 \mathrm{G6618}\) & \(175 \mathrm{G6640}\) & P75K - P90K \\
\hline 180 & 150 & 175G6619 & 175G6641 & P110 \\
\hline 217 & 200 & 175G6620 & 175G6642 & P132 \\
\hline 289 & 250 & 175G6621 & 175G6643 & P160 \\
\hline 370 & 350 & \(175 \mathrm{G6690}\) & 175G6693 & P200 \\
\hline 434 & 350 & 2x175G6620 & 2x175G6642 & P250 \\
\hline 506 & 450 & 175G6620 + 175G6621 & 175G6642 + 175G6643 & P315 \\
\hline 578 & 500 & 2x 175G6621 & 2x 175G6643 & P355 \\
\hline 648 & 550-600 & 2x175G6689 & 2x175G6692 & P400 \\
\hline 694 & 600 & 175G6689 + 175G6690 & 175G6692 + 175G6693 & P450 \\
\hline 740 & 650 & 2x175G6690 & 2x175G6693 & P500 \\
\hline
\end{tabular}

Matching the frequency converter and filter is pre-calculated based on \(400 \mathrm{~V} / 480 \mathrm{~V}\) and on a typical motor load (4 pole) and \(110 \%\) torque.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{500-525 VAC, 50 Hz} \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {AHF,N }}\) [A]} & \multirow[t]{2}{*}{Typical Motor Used [kW]} & \multicolumn{2}{|c|}{Danfoss ordering number} & \multirow[b]{2}{*}{Frequency converter size} \\
\hline & & AHF 005 & AHF 010 & \\
\hline 10 & 1.1-7.5 & 175G6644 & 175G6656 & P1K1 - P7K5 \\
\hline 19 & 11 & 175G6645 & \(175 \mathrm{G6657}\) & P11K \\
\hline 26 & 15-18.5 & 175G6646 & 175G6658 & P15K - P18K \\
\hline 35 & 22 & 175G6647 & 175G6659 & P22K \\
\hline 43 & 30 & 175G6648 & \(175 \mathrm{G6660}\) & P30K \\
\hline 72 & 37-45 & 175G6649 & \(175 \mathrm{G6661}\) & P45K - P55K \\
\hline 101 & 55 & 175G6650 & 175G6662 & P75K \\
\hline 144 & 75-90 & 175G6651 & 175G6663 & P90K - P110 \\
\hline 180 & 110 & 175G6652 & 175G6664 & P132 \\
\hline 217 & 132 & 175G6653 & 175G6665 & P160 \\
\hline 289 & 160-200 & 175G6654 & 175G6666 & P200-P250 \\
\hline 324 & 250 & 175G6655 & \(175 \mathrm{G6667}\) & P315 \\
\hline 397 & 315 & 175G6652 + 175G6653 & 175G6641 + 175G6665 & P400 \\
\hline 434 & 355 & 2x175G6653 & 2x175G6665 & P450 \\
\hline 506 & 400 & 175G6653 + 175G6654 & 175G6665 + 175G6666 & P500 \\
\hline 578 & 450 & 2X 175G6654 & 2X 175G6666 & P560 \\
\hline 613 & 500 & 175 G 6654 + 175G6655 & 175 G 6666 + 175G6667 & P630 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{690 VAC, 50 Hz} \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {AHF,N }}\) [ A ]} & \multirow[t]{2}{*}{Typical Motor Used [kW]} & \multicolumn{2}{|c|}{Danfoss ordering number} & \multirow[b]{2}{*}{Frequency converter size} \\
\hline & & AHF 005 & AHF 010 & \\
\hline 43 & 45 & 130 B 2328 & 130B2293 & \\
\hline 72 & 45-55 & 130 B 2330 & 130B2295 & P37K - P45K \\
\hline 101 & 75-90 & 130B2331 & 130B2296 & P55K - P75K \\
\hline 144 & 110 & 130B2333 & 130B2298 & P90K - P110 \\
\hline 180 & 132 & 130B2334 & 130B2299 & P132 \\
\hline 217 & 160 & 130B2335 & \(130 \mathrm{B2300}\) & P160 \\
\hline 288 & 200-250 & \(2 \times 130 \mathrm{~B} 2333\) & 130B2301 & P200-P250 \\
\hline 324 & 315 & 130B2334 + 130B2335 & 130B2302 & P315 \\
\hline 397 & 400 & 130B2334 + 130B2335 & 130B2299 + 130B2300 & P400 \\
\hline 434 & 450 & \(2 \times 130 \mathrm{~B} 2335\) & \(2 \times 130 \mathrm{~B} 2300\) & P450 \\
\hline 505 & 500 & * & 130B2300 + 130B2301 & P500 \\
\hline 576 & 560 & * & \(2 \times 130 \mathrm{~B} 2301\) & P560 \\
\hline 612 & 630 & * & 130B2301 + 130B2300 & P630 \\
\hline 730 & 710 & * & 2x130B2302 & P710 \\
\hline
\end{tabular}

Table 4.3: * For higher currents, please contact Danfoss.

\subsection*{4.2.4 Ordering Numbers: Sine Wave Filter Modules, 200-500 VAC}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Mains supply \(3 \times 200\) to \(\mathbf{4 8 0}\) [VAC]} \\
\hline \multicolumn{3}{|l|}{Frequency converter size} & \multirow[b]{2}{*}{Minimum switching frequency [kHz]} & \multirow[t]{2}{*}{Maximum output frequency [Hz]} & \multirow[b]{2}{*}{Part No. IP20} & \multirow[b]{2}{*}{Part No. IP00} & \multirow[b]{2}{*}{Rated filter current at
\[
50 \mathrm{~Hz}[\mathrm{~A}]
\]} \\
\hline \[
\begin{gathered}
200-240 \\
\text { [VAC] }
\end{gathered}
\] & \[
\begin{gathered}
380-440 \\
\text { [VAC] } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 440-480 } \\
\text { [VAC] }
\end{gathered}
\] & & & & & \\
\hline & P1K1 & P1K1 & 5 & 120 & 130B2441 & 130 B 2406 & 4.5 \\
\hline & P1K5 & P1K5 & 5 & 120 & 130B2441 & 130B2406 & 4.5 \\
\hline & P2K2 & P2K2 & 5 & 120 & 130 B 2443 & 130 B 2408 & 8 \\
\hline P1K5 & P3K0 & P3K0 & 5 & 120 & 130B2443 & 130B2408 & 8 \\
\hline & P4K0 & P4K0 & 5 & 120 & 130B2444 & 130B2409 & 10 \\
\hline P2K2 & P5K5 & P5K5 & 5 & 120 & 130B2446 & 130B2411 & 17 \\
\hline P3K0 & P7K5 & P7K5 & 5 & 120 & 130B2446 & 130 B 2411 & 17 \\
\hline P4K0 & & & 5 & 120 & 130 B 2446 & 130 B 2411 & 17 \\
\hline P5K5 & P11K & P11K & 4 & 100 & 130 B 2447 & 130 B 2412 & 24 \\
\hline P7K5 & P15K & P15K & 4 & 100 & 130B2448 & 130 B 2413 & 38 \\
\hline & P18K & P18K & 4 & 100 & 130 B 2448 & 130 B 2413 & 38 \\
\hline P11K & P22K & P22K & 4 & 100 & 130 B 2307 & 130B2281 & 48 \\
\hline P15K & P30K & P30K & 3 & 100 & 130B2308 & 130 B 2282 & 62 \\
\hline P18K & P37K & P37K & 3 & 100 & 130B2309 & 130 B 2283 & 75 \\
\hline P22K & P45K & P55K & 3 & 100 & 130 B 2310 & 130B2284 & 115 \\
\hline P30K & P55K & P75K & 3 & 100 & 130 B 2310 & 130 B 2284 & 115 \\
\hline P37K & P75K & P90K & 3 & 100 & 130B2311 & 130 B 2285 & 180 \\
\hline P45K & P90K & P110 & 3 & 100 & 130B2311 & 130B2285 & 180 \\
\hline & P110 & P132 & 3 & 100 & 130 B 2312 & 130 B 2286 & 260 \\
\hline & P132 & P160 & 3 & 100 & 130 B 2313 & 130 B 2287 & 260 \\
\hline & P160 & P200 & 3 & 100 & 130 B 2313 & 130 B 2287 & 410 \\
\hline & P200 & P250 & 3 & 100 & 130 B 2314 & 130B2288 & 410 \\
\hline & P250 & P315 & 3 & 100 & 130 B 2314 & 130 B 2288 & 480 \\
\hline & P315 & P315 & 2 & 100 & 130 B 2315 & 130B2289 & 660 \\
\hline & P355 & P355 & 2 & 100 & 130 B 2315 & 130B2289 & 660 \\
\hline & P400 & P400 & 2 & 100 & 130 B 2316 & 130 B 2290 & 750 \\
\hline & & P450 & 2 & 100 & 130 B 2316 & 130 B 2290 & 750 \\
\hline & P450 & P500 & 2 & 100 & 130 B 2317 & 130B2291 & 880 \\
\hline & P500 & P560 & 2 & 100 & 130 B 2317 & 130B2291 & 880 \\
\hline & P560 & P630 & 2 & 100 & 130 B 2318 & 130 B 2292 & 1200 \\
\hline & P630 & P710 & 2 & 100 & 130 B 2318 & 130B2292 & 1200 \\
\hline & P710 & P800 & 2 & 100 & \(2 \times 130\) B2317 & 2x130B2291 & 1500 \\
\hline & P800 & P1M0 & 2 & 100 & 2x130B2317 & 2x130B2291 & 1500 \\
\hline & P1M0 & & 2 & 100 & \(2 \times 130\) B2318 & 2x130B2292 & 1700 \\
\hline
\end{tabular}

When using Sine-wave filters, the switching frequency should comply with filter specifications in par. 14-01 Switching Frequency.

\footnotetext{
NB!
See also Output Filter Design Guide, MG.90.Nx.yy
}
4.2.5 Ordering Numbers: Sine-Wave Filter Modules, 525-600/690 VAC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Mains supply \(\mathbf{3 \times 5 2 5}\) to \(\mathbf{6 9 0}\) [VAC]} \\
\hline \multicolumn{2}{|l|}{Frequency converter size} & \multirow[t]{2}{*}{Minimum switching frequency [kHz]} & \multirow[t]{2}{*}{Maximum output frequency [Hz]} & \multirow[t]{2}{*}{Part No. IP20} & \multirow[t]{2}{*}{Part No. IP00} & \multirow[t]{2}{*}{Rated filter current at 50 Hz [A]} \\
\hline 525-600 [VAC] & -690 [VAC] & & & & & \\
\hline P1K1 & & 2 & 100 & 130B2341 & 130B2321 & 13 \\
\hline P1K5 & & 2 & 100 & 130B2341 & 130B2321 & 13 \\
\hline P2k2 & & 2 & 100 & 130B2341 & 130B2321 & 13 \\
\hline P3K0 & & 2 & 100 & 130B2341 & 130B2321 & 13 \\
\hline P4K0 & & 2 & 100 & 130B2341 & 130B2321 & 13 \\
\hline P5K5 & & 2 & 100 & 130B2341 & 130B2321 & 13 \\
\hline P7K5 & & 2 & 100 & 130B2341 & 130B2321 & 13 \\
\hline P11K & & 2 & 100 & 130B2342 & 130B2322 & 28 \\
\hline P15K & & 2 & 100 & 130 B 2342 & 130 B 2322 & 28 \\
\hline P18K & & 2 & 100 & 130 B 2342 & 130B2322 & 28 \\
\hline P22K & & 2 & 100 & 130 B 2342 & 130 B 2322 & 28 \\
\hline P30K & & 2 & 100 & 130 B 2343 & 130B2323 & 45 \\
\hline P37K & P45K & 2 & 100 & 130B2344 & 130B2324 & 76 \\
\hline P45K & P55K & 2 & 100 & 130B2344 & 130B2324 & 76 \\
\hline P55K & P75K & 2 & 100 & 130B2345 & 130B2325 & 115 \\
\hline P75K & P90K & 2 & 100 & 130B2345 & 130B2325 & 115 \\
\hline P90K & P110 & 2 & 100 & 130B2346 & 130 B 2326 & 165 \\
\hline & P132 & 2 & 100 & 130 B 2346 & 130 B 2326 & 165 \\
\hline & P160 & 2 & 100 & 130 B 2347 & 130 B 2327 & 260 \\
\hline & P200 & 2 & 100 & 130 B2347 & 130 B 2327 & 260 \\
\hline & P250 & 2 & 100 & 130 B 2348 & 130B2329 & 303 \\
\hline & P315 & 2 & 100 & 130 B 2370 & 130B2341 & 430 \\
\hline & P355 & 1.5 & 100 & 130 B 2370 & 130B2341 & 430 \\
\hline & P400 & 1.5 & 100 & 130 B 2370 & 130B2341 & 430 \\
\hline & P450 & 1.5 & 100 & 130B2371 & 130B2342 & 530 \\
\hline & P500 & 1.5 & 100 & 130B2371 & 130 B 2342 & 530 \\
\hline & P560 & 1.5 & 100 & 130B2381 & 130 B 2337 & 660 \\
\hline & P630 & 1.5 & 100 & 130B2381 & 130 B 2337 & 660 \\
\hline & P710 & 1.5 & 100 & 130B2382 & 130B2338 & 765 \\
\hline & P800 & 1.5 & 100 & 130 B 2383 & 130 B 2339 & 940 \\
\hline & P900 & 1.5 & 100 & 130 B 2383 & 130B2339 & 940 \\
\hline & P1M0 & 1.5 & 100 & 130B2384 & 130B2340 & 1320 \\
\hline & P1M2 & 1.5 & 100 & 130B2384 & 130 B 2340 & 1320 \\
\hline & P1M4 & 1.5 & 100 & 2x130B2382 & 2x130B2338 & 1479 \\
\hline
\end{tabular}


\section*{NB!}

See also Output Filter Design Guide, MG.90.Nx.yy

\subsection*{4.2.6 Ordering Numbers: du/dt Filters, 380-480 VAC}

Mains supply \(\mathbf{3 x 3 8 0}\) to \(\mathbf{3 x 4 8 0}\) VAC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Frequency converter size} & \multirow[t]{2}{*}{Minimum switching frequency [kHz]} & \multirow[t]{2}{*}{Maximum output frequen-
cy [Hz]} & \multirow{2}{*}{Part No. IP20} & \multirow{2}{*}{Part No. IP00} & \multirow[t]{2}{*}{Rated filter current at 50
\[
\mathrm{Hz}[\mathrm{~A}]
\]} \\
\hline 380-439[VAC] & 440-480 [VAC] & & & & & \\
\hline P11K & P11K & 4 & 100 & 130 B 2396 & 130B2385 & 24 \\
\hline P15K & P15K & 4 & 100 & 130 B 2397 & 130 B 2386 & 45 \\
\hline P18K & P18K & 4 & 100 & 130 B 2397 & 130 B 2386 & 45 \\
\hline P22K & P22K & 4 & 100 & 130 B 2397 & 130 B 2386 & 45 \\
\hline P30K & P30K & 3 & 100 & 130 B 2398 & 130 B 2387 & 75 \\
\hline P37K & P37K & 3 & 100 & 130 B 2398 & 130 B 2387 & 75 \\
\hline P45K & P45K & 3 & 100 & 130B2399 & 130 B 2388 & 110 \\
\hline P55K & P55K & 3 & 100 & 130B2399 & 130 B 2388 & 110 \\
\hline P75K & P75K & 3 & 100 & 130B2400 & 130B2389 & 182 \\
\hline P90K & P90K & 3 & 100 & 130 B 2400 & 130 B 2389 & 182 \\
\hline P110 & P110 & 3 & 100 & 130B2401 & 130 B 2390 & 280 \\
\hline P132 & P132 & 3 & 100 & 130B2401 & 130 B 2390 & 280 \\
\hline P160 & P160 & 3 & 100 & 130B2402 & 130B2391 & 400 \\
\hline P200 & P200 & 3 & 100 & 130 B 2402 & 130B2391 & 400 \\
\hline P250 & P250 & 3 & 100 & 130 B 2277 & 130B2275 & 500 \\
\hline P315 & P315 & 2 & 100 & 130 B 2278 & 130 B 2276 & 750 \\
\hline P355 & P355 & 2 & 100 & \(130 \mathrm{B2278}\) & 130 B 2276 & 750 \\
\hline P400 & P400 & 2 & 100 & \(130 \mathrm{B2278}\) & 130 B 2276 & 750 \\
\hline & P450 & 2 & 100 & \(130 \mathrm{B2278}\) & 130 B 2276 & 750 \\
\hline P450 & P500 & 2 & 100 & 130B2405 & 130 B 2393 & 910 \\
\hline P500 & P560 & 2 & 100 & 130 B 2405 & 130 B 2393 & 910 \\
\hline P560 & P630 & 2 & 100 & 130 B 2407 & 130 B 2394 & 1500 \\
\hline P630 & P710 & 2 & 100 & 130 B 2407 & 130 B 2394 & 1500 \\
\hline P710 & P800 & 2 & 100 & 130 B 2407 & 130 B 2394 & 1500 \\
\hline P800 & P1M0 & 2 & 100 & 130 B 2407 & 130B2394 & 1500 \\
\hline P1M0 & & 2 & 100 & 130 B 2410 & 130B2395 & 2300 \\
\hline
\end{tabular}

\footnotetext{
NB!
See also Output Filter Design Guide, MG.90.Nx.yy
}

\subsection*{4.2.7 Ordering Numbers: du/dt Filters, 525-600/690 VAC}

Mains supply \(3 \times 525\) to \(3 \times 690\) VAC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Frequency converter size} & \multirow[t]{2}{*}{Minimum switching frequency [kHz]} & \multirow[t]{2}{*}{Maximum output frequency [Hz]} & \multirow{2}{*}{Part No. IP20} & \multirow{2}{*}{Part No. IP00} & \multirow[t]{2}{*}{Rated filter current at 50
\[
\mathrm{Hz}[\mathrm{~A}]
\]} \\
\hline 525-600 [VAC] & -690 [VAC] & & & & & \\
\hline P1K1 & & 4 & 100 & 130B2423 & 130 B 2414 & 28 \\
\hline P1K5 & & 4 & 100 & 130 B 2423 & 130 B 2414 & 28 \\
\hline P2K2 & & 4 & 100 & 130B2423 & 130 B 2414 & 28 \\
\hline P3K0 & & 4 & 100 & 130 B 2423 & 130 B 2414 & 28 \\
\hline P4K0 & & 4 & 100 & 130B2424 & 130 B 2415 & 45 \\
\hline P5K5 & & 4 & 100 & 130B2424 & 130 B 2415 & 45 \\
\hline P7K5 & & 3 & 100 & 130 B 2425 & 130 B 2416 & 75 \\
\hline P11K & & 3 & 100 & 130B2425 & 130 B 2416 & 75 \\
\hline P15K & & 3 & 100 & 130B2426 & 130 B 2417 & 115 \\
\hline P18K & & 3 & 100 & 130B2426 & 130 B 2417 & 115 \\
\hline P22K & & 3 & 100 & 130 B 2427 & 130 B 2418 & 165 \\
\hline P30K & & 3 & 100 & 130B2427 & 130 B 2418 & 165 \\
\hline P37K & P45K & 3 & 100 & 130 B 2425 & 130 B 2416 & 75 \\
\hline P45K & P55K & 3 & 100 & 130B2425 & 130 B 2416 & 75 \\
\hline P55K & P75K & 3 & 100 & 130 B 2426 & 130 B 2417 & 115 \\
\hline P75K & P90K & 3 & 100 & 130B2426 & 130 B 2417 & 115 \\
\hline P90K & P110 & 3 & 100 & 130 B 2427 & 130 B 2418 & 165 \\
\hline & P132 & 2 & 100 & 130B2427 & 130 B 2418 & 165 \\
\hline & P160 & 2 & 100 & 130B2428 & 130 B 2419 & 260 \\
\hline & P200 & 2 & 100 & 130B2428 & 130B2419 & 260 \\
\hline & P250 & 2 & 100 & 130B2429 & 130B2420 & 310 \\
\hline & P315 & 2 & 100 & 130B2238 & 130B2235 & 430 \\
\hline & P400 & 2 & 100 & \(130 \mathrm{B2238}\) & \(130 \mathrm{B2235}\) & 430 \\
\hline & P450 & 2 & 100 & 130B2239 & 130 B 2236 & 530 \\
\hline & P500 & 2 & 100 & 130B2239 & 130 B 2236 & 530 \\
\hline & P560 & 2 & 100 & \(130 \mathrm{B2274}\) & \(130 \mathrm{B2280}\) & 630 \\
\hline & P630 & 2 & 100 & 130 B 2274 & 130 B 2280 & 630 \\
\hline & P710 & 2 & 100 & 130 B 2430 & 130B2421 & 765 \\
\hline & P800 & 2 & 100 & 130B2431 & 130 B 2422 & 1350 \\
\hline & P900 & 2 & 100 & 130B2431 & 130 B 2422 & 1350 \\
\hline & P1M0 & 2 & 100 & 130B2431 & 130 B 2422 & 1350 \\
\hline & P1M2 & 2 & 100 & 130B2431 & 130 B 2422 & 1350 \\
\hline & P1M4 & 2 & 100 & 2x130B2430 & 2x130B2421 & 1530 \\
\hline
\end{tabular}
```

NB!
See also Output Filter Design Guide, MG.90.Nx.yy

```

\subsection*{4.2.8 Ordering numbers: Brake resistors}

\footnotetext{
NB!
See Brake Resistor Design Guide, MG.90.Ox.yy
}

\section*{5 How to Install}

\section*{Page intentionally left blank!}

ARMSTRONG
5.1.1 Mechanical front views
5.1.1 Mechanical front views

ARMSTRONG


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Mechanical dimensions} \\
\hline Enclosure size (kW) & & D1 & D2 & D3 & D4 & E1 & E2 & F1 & F2 & F3 & F4 \\
\hline \[
\begin{aligned}
& 380-480 \text { VAC } \\
& 525-690 \text { VAC }
\end{aligned}
\] & & \[
\begin{gathered}
\hline 110-132 \\
45-160 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 160-250 \\
& 200-400 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\hline 110-132 \\
45-160 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
160-250 \\
200-400 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
315-450 \\
450-630 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 315-450 \\
& 450-630 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline \mathbf{5 0 0 - 7 1 0} \\
\mathbf{7 1 0 - 9 0 0} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\hline 800-1000 \\
1000-1400 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline 500-710 \\
\hline \mathbf{7 1 0 - 9 0 0} \\
\hline
\end{array}
\] & \[
\begin{array}{c|}
\hline 800-1000 \\
1000-1400 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { IP } \\
& \text { NEMA }
\end{aligned}
\] & & \[
\begin{gathered}
21 / 54 \\
\text { Type } 1 / 12 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
21 / 54 \\
\text { Type } 1 / 12 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
00 \\
\text { Chassis }
\end{gathered}
\] & \[
\begin{gathered}
00 \\
\text { Chassis }
\end{gathered}
\] & \[
\begin{gathered}
21 / 54 \\
\text { Type } 1 / 12
\end{gathered}
\] & \[
\begin{gathered}
00 \\
\text { Chassis }
\end{gathered}
\] & \[
\begin{gathered}
21 / 54 \\
\text { Type } 1 / 12
\end{gathered}
\] & \[
\begin{gathered}
\hline 21 / 54 \\
\text { Type } 1 / 12 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
21 / 54 \\
\text { Type } 1 / 12 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
\[
21 / 54
\] \\
Type \(1 / 12\)
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Shipping dimensions (mm):} \\
\hline Width & & 1730 & 1730 & 1220 & 1490 & 2197 & 1705 & 2324 & 2324 & 2324 & 2324 \\
\hline Height & & 650 & 650 & 650 & 650 & 840 & 831 & 1569 & 1962 & 2159 & 2559 \\
\hline Depth & & 570 & 570 & 570 & 570 & 736 & 736 & 927 & 927 & 927 & 927 \\
\hline \multicolumn{12}{|l|}{FCDrive dimensions: (mm)} \\
\hline \multicolumn{12}{|l|}{Height} \\
\hline Back plate & A & 1209 & 1589 & 1046 & 1327 & 2000 & 1547 & 2281 & 2281 & 2281 & 2281 \\
\hline \multicolumn{12}{|l|}{Width} \\
\hline Back plate & B & 420 & 420 & 408 & 408 & 600 & 585 & 1400 & 1800 & 2000 & 2400 \\
\hline \multicolumn{12}{|l|}{Depth} \\
\hline & C & 380 & 380 & 375 & 375 & 494 & 494 & 607 & 607 & 607 & 607 \\
\hline \multicolumn{12}{|l|}{Dimensions brackets (mm/inch)} \\
\hline Centre hole to edge & a & 22/0.9 & 22/0.9 & 22/0.9 & 22/0.9 & 56/2.2 & 23/0.9 & & & & \\
\hline Centre hole to edge & b & 25/1.0 & 25/1.0 & 25/1.0 & 25/1.0 & 25/1.0 & 25/1.0 & & & & \\
\hline Hole diameter & c & 25/1.0 & 25/1.0 & 25/1.0 & 25/1.0 & 25/1.0 & 25/1.0 & & & & \\
\hline & d & 20/0.8 & 20/0.8 & 20/0.8 & 20/0.8 & & 27/1.1 & & & & \\
\hline & e & 11/0.4 & 11/0.4 & 11/0.4 & 11/0.4 & & 13/0.5 & & & & \\
\hline & f & 22/0.9 & 22/0.9 & 22/0.9 & 22/0.9 & & & & & & \\
\hline & g & 10/0.4 & 10/0.4 & 10/0.4 & 10/0.4 & & & & & & \\
\hline & h & 51/2.0 & 51/2.0 & 51/2.0 & 51/2.0 & & & & & & \\
\hline & i & 25/1.0 & 25/1.0 & 25/1.0 & 25/1.0 & & & & & & \\
\hline & j & 49/1.9 & 49/1.9 & 49/1.9 & 49/1.9 & & & & & & \\
\hline Hole diameter & k & 11/0.4 & 11/0.4 & 11/0.4 & 11/0.4 & & & & & & \\
\hline Max weight
(kg) & & 104 & 151 & 91 & 138 & 313 & 277 & 1004 & 1246 & 1299 & 1541 \\
\hline
\end{tabular}
5.1.3 Accessory bags
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Accessory Bags: Find the following parts included in the frequency converter accessory bags} \\
\hline  &  &  &  \\
\hline Frame sizes \(A 1, A 2\) and \(A 3\) & Frame size A5 & Frame sizes 81 and 82 & Frame sizes 11 and \(\mathrm{C}_{2}\) \\
\hline  &  &  &  \\
\hline Frame size 33 & Frame size 84 & Frame size C3 & Frame size C4 \\
\hline \multicolumn{4}{|l|}{\(1+2\) only available in units with brake chopper. For DC link connection (Load sharing) the connector 1 can be ordered separately (Code no. 130B1064) An eight pole connector is included in accessory bag for FC 102 without Safe Stop.} \\
\hline
\end{tabular}

\subsection*{5.1.4 Mechanical mounting}

All \(\mathrm{A}, \mathrm{B}\) and C enclosures allow side-by-side installation.
Exception: If a IP21 kit is used, there has to be a clearance between the enclosures. For enclosures A2, A3, B3,B4 and C3 the minimum clearance is 50 mm , for C 4 it is 75 mm .

For optimal cooling conditions allow a free air passage above and below the frequency converter. See table below.

1. Drill holes in accordance with the measurements given.
2. You must provide screws suitable for the surface on which you want to mount the frequency converter. Retighten all four screws.


Table 5.1: When mounting enclosure sizes \(A 5, B 1, B 2, B 3, B 4, C 1, C 2, C 3\) and \(C 4\) on a non-solid back wall, the drive must be provided with a back plate A due to insufficient cooling air over the heat sink.

\subsection*{5.1.5 Lifting}

Always lift the frequency converter in the dedicated lifting eyes. For all D and E2 (IP00) enclosures, use a bar to avoid bending the lifting holes of the frequency converter.


Illustration 5.3: Recommended lifting method, frame sizes D and E.


Illustration 5.4: Recommended lifting method, frame size F1.

Illustration 5.5: Recommended lifting method, frame size F2.



Illustration 5.7: Recommended lifting method, frame size F4.

\subsection*{5.1.6 Safety Requirements of Mechanical Installation}


Pay attention to the requirements that apply to integration and field mounting kit. Observe the information in the list to avoid serious injury or equipment damage, especially when installing large units.

The frequency converter is cooled by means of air circulation.
To protect the unit from overheating, it must be ensured that the ambient temperature does not exceed the maximum temperature stated for the frequency converterand that the 24 -hour average temperature is not exceeded. Locate the maximum temperature and 24 -hour average in the paragraph Derating for Ambient Temperature.
If the ambient temperature is in the range of \(45^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}\), derating of the frequency converter will become relevant, see Derating for Ambient Temperature.

The service life of the frequency converter is reduced if derating for ambient temperature is not taken into account.

\subsection*{5.1.7 Field Mounting}

For field mounting the IP 21/IP 4X top/TYPE 1 kits or IP 54/55 units are recommended.

\subsection*{5.2 Electrical Installation}

\subsection*{5.2.1 Cables general}
NB!
For the IVS 102 Drive High Power series mains and motor connections, please see IVS 102 Drive High Power Operating Instruc-
tions MG.11.FX.YY.
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
NB! \\
Cables General \\
All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. Copper ( \(60 / 75{ }^{\circ} \mathrm{C}\) ) conductors are recommended.
\end{tabular} \\
\hline
\end{tabular}

Details of terminal tightening torques.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Power (kW)} & \multicolumn{6}{|c|}{Torque (Nm)} \\
\hline Enclosure & \[
\begin{gathered}
200-240 \\
v
\end{gathered}
\] & \[
\begin{gathered}
380-480 \\
v
\end{gathered}
\] & \[
\begin{gathered}
525-600 \\
v
\end{gathered}
\] & Mains & Motor & DC connection & Brake & Earth & Relay \\
\hline A2 & 1.1-3.0 & 1.1-4.0 & 1.1-4.0 & 1.8 & 1.8 & 1.8 & 1.8 & 3 & 0.6 \\
\hline A3 & 3.7 & 5.5-7.5 & 5.5-7.5 & 1.8 & 1.8 & 1.8 & 1.8 & 3 & 0.6 \\
\hline A5 & 1.1-3.7 & 1.1-7.5 & 1.1-7.5 & 1.8 & 1.8 & 1.8 & 1.8 & 3 & 0.6 \\
\hline B1 & 5.5-11 & 11-18.5 & - & 1.8 & 1.8 & 1.5 & 1.5 & 3 & 0.6 \\
\hline B2 & \[
15
\] & \[
\begin{aligned}
& 22 \\
& 30
\end{aligned}
\] & - & \[
\begin{gathered}
4.5 \\
4.5^{2}
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4.5^{2)}
\end{gathered}
\] & \[
\begin{aligned}
& 3.7 \\
& 3.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.7 \\
& 3.7
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] \\
\hline B3 & 5.5-11 & 11-18.5 & 11-18.5 & 1.8 & 1.8 & 1.8 & 1.8 & 3 & 0.6 \\
\hline B4 & 11-18.5 & 18.5-37 & 18.5-37 & 4.5 & 4.5 & 4.5 & 4.5 & 3 & 0.6 \\
\hline C1 & 18.5-30 & 37-55 & - & 10 & 10 & 10 & 10 & 3 & 0.6 \\
\hline C2 & 37-45 & 75-90 &  & 14/24 \({ }^{1}\) & 14/24 \({ }^{1}\) & 14 & 14 & 3 & 0.6 \\
\hline C3 & 18.5-30 & 37-55 & 37-55 & 10 & 10 & 10 & 10 & 3 & 0.6 \\
\hline C4 & 30-45 & 55-90 & 55-90 & 14/24 \({ }^{\text {1) }}\) & 14/24 \({ }^{\text {1) }}\) & 14 & 14 & 3 & 0.6 \\
\hline \multicolumn{10}{|c|}{High Power} \\
\hline Enclosure & & \[
\begin{gathered}
380-480 \\
v \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
525-690 \\
v \\
\hline
\end{gathered}
\] & Mains & Motor & DC connection & Brake & Earth & Relay \\
\hline D1/D3 & & 110-132 & 45-160 & 19 & 19 & 9.6 & 9.6 & 19 & 0.6 \\
\hline D2/D4 & & 160-250 & 200-400 & 19 & 19 & 9.6 & 9.6 & 19 & 0.6 \\
\hline E1/E2 & & 315-450 & 450-630 & 19 & 19 & 19 & 9.6 & 19 & 0.6 \\
\hline F1-F3 \({ }^{3)}\) & & 500-710 & 710-900 & 19 & 19 & 19 & 9.6 & 19 & 0.6 \\
\hline F2-F43) & & 800-1000 & 1000-1400 & 19 & 19 & 19 & 9.6 & 19 & 0.6 \\
\hline
\end{tabular}

Table 5.2: Tightening of terminals
1) For different cable dimensions \(x / y\), where \(x \leq 95 \mathrm{~mm}^{2}\) and \(y \geq 95 \mathrm{~mm}^{2}\)
2) Cable dimensions above \(18.5 \mathrm{~kW} \geq 35 \mathrm{~mm}^{2}\) and below \(22 \mathrm{~kW} \leq 10 \mathrm{~mm}^{2}\)
3) For data on the F-series please consult IVS 102 Drive High Power Operating Instructions, MG.11.F1.02

\subsection*{5.2.2 Electrical installation and control cables}


Illustration 5.8: Diagram showing all electrical terminals. (Terminal 37 present for units with Safe Stop Function only.)
\begin{tabular}{|lccc|}
\hline Terminal number & Terminal description & Parameter number & Factory default \\
\hline \(1+2+3\) & Terminal 1+2+3-Relay1 & \(5-40\) & No operation \\
\(4+5+6\) & Terminal 4+5+6-Relay2 & \(5-40\) & No operation \\
12 & Terminal 12 Supply & - & +24 V DC \\
13 & Terminal 13 Supply & - & +24 V DC \\
18 & Terminal 18 Digital Input & \(5-10\) & Start \\
19 & Terminal 19 Digital Input & \(5-11\) & No operation \\
20 & Terminal 20 & - & Common \\
27 & Terminal 27 Digital Input/Output & \(5-12 / 5-30\) & Coast inverse \\
29 & Terminal 29 Digital Input/Output & \(5-13 / 5-31\) & Jog \\
32 & Terminal 32 Digital Input & \(5-14\) & No operation \\
33 & Terminal 33 Digital Input & \(5-15\) & No operation \\
37 & Terminal 37 Digital Input & - & Safe Stop \\
42 & Terminal 42 Analog Output & \(6-50\) & Speed 0-HighLim \\
53 & Terminal 53 Analog Input & \(3-15 / 6-1^{*} / 20-0^{*}\) & Reference \\
54 & Terminal 54 Analog Input & \(3-15 / 6-2^{*} / 20-0^{*}\) & Feedback \\
\hline
\end{tabular}

Table 5.3: Terminal connections

Very long control cables and analog signals may, in rare cases and depending on installation, result in \(50 / 60 \mathrm{~Hz}\) earth loops due to noise from mains supply cables.

If this occurs, break the screen or insert a 100 nF capacitor between screen and chassis.


\section*{NB!}

The common of digital / analog inputs and outputs should be connected to separate common terminals 20,39, and 55. This will avoid ground current interference among groups. For example, it avoids switching on digital inputs disturbing analog inputs.

\section*{NB!}

Control cables must be screened/armoured.


\subsection*{5.2.3 Motor Cables}

See section General Specifications for maximum dimensioning of motor cable cross-section and length.
- Use a screened/armoured motor cable to comply with EMC emission specifications.
- Keep the motor cable as short as possible to reduce the noise level and leakage currents.
- Connect the motor cable screen to both the de-coupling plate of the frequency converter and to the metal cabinet of the motor.
- Make the screen connections with the largest possible surface area (cable clamp). This is done by using the supplied installation devices in the frequency converter.
- Avoid mounting with twisted screen ends (pigtails), which will spoil high frequency screening effects.
- If it is necessary to split the screen to install a motor isolator or motor relay, the screen must be continued with the lowest possible HF impedance.

\section*{F frame Requirements}

F1/F3 requirements: Motor phase cable quantities must be multiples of 2 , resulting in \(2,4,6\), or 8 ( 1 cable is not allowed) to obtain equal amount of wires attached to both inverter module terminals. The cables are required to be equal length within \(10 \%\) between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

F2/F4 requirements: Motor phase cable quantities must be multiples of 3 , resulting in \(3,6,9\), or 12 ( 1 or 2 cables are not allowed) to obtain equal amount of wires attached to each inverter module terminal. The wires are required to be equal length within \(10 \%\) between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

Output junction box requirements: The length, minimum 2.5 meters, and quantity of cables must be equal from each inverter module to the common terminal in the junction box.


\section*{NB!}

If a retrofit application requires unequal amount of wires per phase, please consult the factory for requirements and documentation or use the top/bottom entry side cabinet busbar option.

\subsection*{5.2.4 Electrical Installation of Motor Cables}

\section*{Screening of cables}

Avoid installation with twisted screen ends (pigtails). They spoil the screening effect at higher frequencies.
If it is necessary to break the screen to install a motor isolator or motor contactor, the screen must be continued at the lowest possible HF impedance.
Cable length and cross-section
The frequency converter has been tested with a given length of cable and a given cross-section of that cable. If the cross-section is increased, the cable capacitance - and thus the leakage current - may increase, and the cable length must be reduced correspondingly.

\section*{Switching frequency}

When frequency converters are used together with Sine-wave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to the Sine-wave filter instruction in par. 14-01 Switching Frequency.

Aluminium conductors
Aluminium conductors are not recommended. Terminals can accept aluminium conductors but the conductor surface has to be clean and the oxidation must be removed and sealed by neutral acid free Vaseline grease before the conductor is connected.
Furthermore, the terminal screw must be retightened after two days due to the softness of the aluminium. It is crucial to keep the connection a gas tight joint, otherwise the aluminium surface will oxidize again.

\subsection*{5.2.5 Enclosure knock-outs}


Illustration 5.9: Cable entry holes for enclosure A5. The suggested use of the holes are purely recommendations and other solutions are possible.


Illustration 5.10: Cable entry holes for enclosure B1. The suggested use of the holes are purely recommendations and other solutions are possible.


Illustration 5.11: Cable entry holes for enclosure B1. The suggested use of the holes are purely recommendations and other solutions are possible.


Illustration 5.12: Cable entry holes for enclosure B2. The suggested use of the holes are purely recommendations and other solutions are possible.


Illustration 5.13: Cable entry holes for enclosure B2. The suggested use of the holes are purely recommendations and other solutions are possible.


Illustration 5.14: Cable entry holes for enclosure C 1 . The suggested use of the holes are purely recommendations and other solutions are possible.


Illustration 5.15: Cable entry holes for enclosure C2. The suggested use of the holes are purely recommendations and other solutions are possible.

\section*{Legend:}

A: Line in
B: Brake/load sharing
C: Motor out
D: Free space

\subsection*{5.2.6 Removal of Knockouts for Extra Cables}
1. Remove cable entry from the frequency converter (Avoiding foreign parts falling into the frequency converter when removing knockouts)
2. Cable entry has to be supported around the knockout you intend to remove.
3. The knockout can now be removed with a strong mandrel and a hammer.
4. Remove burrs from the hole.
5. Mount Cable entry on frequency converter.

\subsection*{5.2.7 Gland/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12)}

Cables are connected through the gland plate from the bottom. Remove the plate and plan where to place the entry for the glands or conduits. Prepare holes in the marked area on the drawing.


\section*{NB!}

The gland plate must be fitted to the frequency converter to ensure the specified protection degree, as well as ensuring proper cooling of the unit. If the gland plate is not mounted, the frequency converter may trip on Alarm 69, Pwr. Card Temp


Illustration 5.16: Example of proper installation of the gland plate.

Frame size D1 + D2


\section*{Frame size E1}


Cable entries viewed from the bottom of the frequency converter - 1) Mains side 2) Motor side

\section*{ARMSTRONG}

Frame size F1


Frame size F2


\section*{Frame size F3}


Frame size F4


F1-F4: Cable entries viewed from the bottom of the frequency converter - 1) Place conduits in marked areas


Illustration 5.17: Mounting of bottom plate,frame size E1.

The bottom plate of the E1 can be mounted from either in- or outside of the enclosure, allowing flexibility in the installation process, i.e. if mounted from the bottom the glands and cables can be mounted before the frequency converter is placed on the pedestal.

\subsection*{5.2.8 Fuses}

\section*{Branch Circuit Protection}

In order to protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be short-circuit and over-current protected according to the national/international regulations.


\section*{Short-circuit protection:}

The frequency converter must be protected against short-circuit to avoid electrical or fire hazard. Danfoss recommends using the fuses mentioned below to protect service personnel and equipment in case of an internal failure in the drive. The frequency converter provides full short-circuit protection in case of a short-circuit on the motor output.


\section*{Over-current protection}

Provide overload protection to avoid fire hazard due to overheating of the cables in the installation. Over current protection must always be carried out according to national regulations. The frequency converter is equipped with an internal over current protection that can be used for upstream overload protection (UL-applications excluded). See par. 4-18 Current Limit in the IVS 102 Drive Programming Guide . Fuses must be designed for protection in a circuit capable of supplying a maximum of 100,000 Arms (symmetrical), \(500 \mathrm{~V} / 600\) V maximum.

\section*{Over-current protection}

If UL/cUL is not to be complied with, Danfoss recommends using the fuses mentioned in the table below, which will ensure compliance with EN50178. In case of malfunction, not following the recommendation may result in unnecessary damage to the frequency converter.

\section*{UL compliance}

\section*{Non-UL compliance fuses}
\begin{tabular}{|c|c|c|c|}
\hline Frequency converter & Max. fuse size & Voltage & Type \\
\hline \multicolumn{4}{|l|}{200-240 V - T2} \\
\hline 1K1-1K5 & \(16 A^{1}\) & 200-240 V & type gG \\
\hline 2K2 & \(25 A^{1}\) & 200-240 V & type gG \\
\hline 3K0 & \(25 A^{1}\) & 200-240 V & type gG \\
\hline 3K7 & \(35 A^{1}\) & 200-240 V & type gG \\
\hline 5K5 & \(50 A^{1}\) & 200-240 V & type gG \\
\hline 7K5 & \(63 A^{1}\) & 200-240 V & type gG \\
\hline 11K & \(63 A^{1}\) & 200-240 V & type gG \\
\hline 15K & \(80 \mathrm{~A}^{1}\) & 200-240 V & type gG \\
\hline 18K5 & \(125 \mathrm{~A}^{1}\) & 200-240 V & type gG \\
\hline 22K & \(125 \mathrm{~A}^{1}\) & 200-240 V & type gG \\
\hline 30K & \(160 \mathrm{~A}^{1}\) & 200-240 V & type gG \\
\hline 37K & \(200 A^{1}\) & 200-240 V & type aR \\
\hline 45K & \(250 A^{1}\) & 200-240 V & type aR \\
\hline \multicolumn{4}{|l|}{380-480 V - T4} \\
\hline 1K1-1K5 & \(10 A^{1}\) & 380-500 V & type gG \\
\hline 2K2-3K0 & \(16 A^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 4K0-5K5 & \(25 A^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 7K5 & \(35 A^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 11K-15K & \(63 A^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 18K & \(63 A^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 22K & \(63 A^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 30K & \(80{ }^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 37K & \(100 \mathrm{~A}^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 45K & \(125 \mathrm{~A}^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 55K & \(160 \mathrm{~A}^{1}\) & \(380-500 \mathrm{~V}\) & type gG \\
\hline 75K & \(250 \mathrm{~A}^{1}\) & \(380-500 \mathrm{~V}\) & type aR \\
\hline 90K & \(250 \mathrm{~A}^{1}\) & \(380-500 \mathrm{~V}\) & type aR \\
\hline \multicolumn{4}{|l|}{1) Max. fuses - see national/international regulations for selecting an applicable fuse size.} \\
\hline
\end{tabular}

Table 5.4: Non-UL fuses \(\mathbf{2 0 0}\) V to \(\mathbf{4 8 0}\) V

If UL/CUL is not to be complied with, we recommend using the following fuses, which will ensure compliance with EN50178:
\begin{tabular}{|ccc|}
\hline Frequency Converter & Voltage & Type \\
\hline P110-P250 & \(380-480 \mathrm{~V}\) & type gG \\
P315-P450 & \(380-480 \mathrm{~V}\) & type gR \\
\hline
\end{tabular}

Table 5.5: Compliance with EN50178

UL compliance fuses
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Frequency converter & Bussmann & Bussmann & Bussmann & SIBA & Littel fuse & \begin{tabular}{l}
Ferraz- \\
Shawmut
\end{tabular} & \begin{tabular}{l}
Ferraz- \\
Shawmut
\end{tabular} \\
\hline \multicolumn{8}{|l|}{200-240 V} \\
\hline kW & Type RK1 & Type J & Type T & Type RK1 & Type RK1 & Type CC & Type RK1 \\
\hline K25-K37 & KTN-R05 & JKS-05 & JJN-05 & 5017906-005 & KLN-R005 & ATM-R05 & A2K-05R \\
\hline K55-1K1 & KTN-R10 & JKS-10 & JJN-10 & 5017906-010 & KLN-R10 & ATM-R10 & A2K-10R \\
\hline 1 K 5 & KTN-R15 & JKS-15 & JJN-15 & 5017906-015 & KLN-R15 & ATM-R15 & A2K-15R \\
\hline 2K2 & KTN-R20 & JKS-20 & JJN-20 & 5012406-020 & KLN-R20 & ATM-R20 & A2K-20R \\
\hline 3K0 & KTN-R25 & JKS-25 & JJN-25 & 5012406-025 & KLN-R25 & ATM-R25 & A2K-25R \\
\hline 3K7 & KTN-R30 & JKS-30 & JJN-30 & 5012406-030 & KLN-R30 & ATM-R30 & A2K-30R \\
\hline 5K5 & KTN-R50 & JKS-50 & JJN-50 & 5012406-050 & KLN-R50 & - & A2K-50R \\
\hline 7K5 & KTN-R50 & JKS-60 & JJN-60 & 5012406-050 & KLN-R60 & - & A2K-50R \\
\hline 11K & KTN-R60 & JKS-60 & JJN-60 & 5014006-063 & KLN-R60 & A2K-60R & A2K-60R \\
\hline 15K & KTN-R80 & JKS-80 & JJN-80 & 5014006-080 & KLN-R80 & A2K-80R & A2K-80R \\
\hline 18K5 & KTN-R125 & JKS-150 & JJN-125 & 2028220-125 & KLN-R125 & A2K-125R & A2K-125R \\
\hline 22K & KTN-R125 & JKS-150 & JJN-125 & 2028220-125 & KLN-R125 & A2K-125R & A2K-125R \\
\hline 30K & FWX-150 & - & - & 2028220-150 & L25S-150 & A25X-150 & A25X-150 \\
\hline 37K & FWX-200 & - & - & 2028220-200 & L25S-200 & A25X-200 & A25X-200 \\
\hline 45K & FWX-250 & - & - & 2028220-250 & L25S-250 & A25X-250 & A25X-250 \\
\hline
\end{tabular}

Table 5.6: UL fuses, 200-240 V
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Frequency converter & Bussmann & Bussmann & Bussmann & SIBA & Littel fuse & \begin{tabular}{l}
Ferraz- \\
Shawmut
\end{tabular} & \begin{tabular}{l}
Ferraz- \\
Shawmut
\end{tabular} \\
\hline \multicolumn{8}{|l|}{380-480 V, 525-600 V} \\
\hline kW & Type RK1 & Type J & Type T & Type RK1 & Type RK1 & Type CC & Type RK1 \\
\hline K37-1K1 & KTS-R6 & JKS-6 & JJS-6 & 5017906-006 & KLS-R6 & ATM-R6 & A6K-6R \\
\hline 1K5-2K2 & KTS-R10 & JKS-10 & JJS-10 & 5017906-010 & KLS-R10 & ATM-R10 & A6K-10R \\
\hline 3K0 & KTS-R15 & JKS-15 & JJS-15 & 5017906-016 & KLS-R16 & ATM-R16 & A6K-16R \\
\hline 4K0 & KTS-R20 & JKS-20 & JJS-20 & 5017906-020 & KLS-R20 & ATM-R20 & A6K-20R \\
\hline 5K5 & KTS-R25 & JKS-25 & JJS-25 & 5017906-025 & KLS-R25 & ATM-R25 & A6K-25R \\
\hline 7K5 & KTS-R30 & JKS-30 & JJS-30 & 5012406-032 & KLS-R30 & ATM-R30 & A6K-30R \\
\hline 11K & KTS-R40 & JKS-40 & JJS-40 & 5014006-040 & KLS-R40 & - & A6K-40R \\
\hline 15K & KTS-R40 & JKS-40 & JJS-40 & 5014006-040 & KLS-R40 & - & A6K-40R \\
\hline 18K & KTS-R50 & JKS-50 & JJS-50 & 5014006-050 & KLS-R50 & - & A6K-50R \\
\hline 22K & KTS-R60 & JKS-60 & JJS-60 & 5014006-063 & KLS-R60 & - & A6K-60R \\
\hline 30K & KTS-R80 & JKS-80 & JJS-80 & 2028220-100 & KLS-R80 & - & A6K-80R \\
\hline 37K & KTS-R100 & JKS-100 & JJS-100 & 2028220-125 & KLS-R100 & & A6K-100R \\
\hline 45K & KTS-R125 & JKS-150 & JJS-150 & 2028220-125 & KLS-R125 & & A6K-125R \\
\hline 55K & KTS-R150 & JKS-150 & JJS-150 & 2028220-160 & KLS-R150 & & A6K-150R \\
\hline 75K & FWH-220 & - & - & 2028220-200 & L50S-225 & & A50-P225 \\
\hline 90K & FWH-250 & - & - & 2028220-250 & L50S-250 & & A50-P250 \\
\hline
\end{tabular}

Table 5.7: UL fuses, 380-600 V

KTS-fuses from Bussmann may substitute KTN for 240 V frequency converters.
FWH-fuses from Bussmann may substitute FWX for 240 V frequency converters.
KLSR fuses from LITTEL FUSE may substitute KLNR fuses for 240 V frequency converters.
L50S fuses from LITTEL FUSE may substitute L50S fuses for 240 V frequency converters.
A6KR fuses from FERRAZ SHAWMUT may substitute A2KR for 240 V frequency converters.
A50X fuses from FERRAZ SHAWMUT may substitute A25X for 240 V frequency converters.

380-480 V, frame sizes \(D, E\) and \(F\)
The fuses below are suitable for use on a circuit capable of delivering 100,000 Arms (symmetrical), 240 V , or 480 V , or 500 V , or 600 V depending on the drive voltage rating. With the proper fusing the drive Short Circuit Current Rating (SCCR) is 100,000 Arms.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Size/ Type & \[
\begin{gathered}
\text { Bussmann } \\
\text { E1958 } \\
\text { JFHR2** }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Bussmann } \\
& \text { E4273 } \\
& \text { T/JDDZ** }
\end{aligned}
\] & \[
\begin{gathered}
\text { SIBA } \\
\text { E180276 } \\
\text { JFHR2 }
\end{gathered}
\] & \begin{tabular}{l}
LittelFuse \\
E71611 \\
JFHR2**
\end{tabular} & FerrazShawmut E60314 JFHR2** & \[
\begin{aligned}
& \text { Bussmann } \\
& \text { E4274 } \\
& \text { H/JDDZ** }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Bussmann } \\
& \text { E125085 } \\
& \text { JFHR2* }
\end{aligned}
\] & Internal Option Bussmann \\
\hline P110 & \[
\begin{aligned}
& \text { FWH- } \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& \text { JJS- } \\
& 300
\end{aligned}
\] & 2061032.315 & L50S-300 & A50-P300 & \[
\begin{gathered}
\text { NOS- } \\
300
\end{gathered}
\] & 170M3017 & 170M3018 \\
\hline P132 & \[
\begin{gathered}
\text { FWH- } \\
350
\end{gathered}
\] & \[
\begin{aligned}
& \text { JJS- } \\
& 350
\end{aligned}
\] & 2061032.35 & L50S-350 & A50-P350 & \[
\begin{gathered}
\text { NOS- } \\
350
\end{gathered}
\] & 170M3018 & 170M3018 \\
\hline P160 & \[
\begin{aligned}
& \text { FWH- } \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& \text { JJS- } \\
& 400
\end{aligned}
\] & 2061032.40 & L50S-400 & A50-P400 & \[
\begin{gathered}
\text { NOS- } \\
400
\end{gathered}
\] & 170M4012 & 170M4016 \\
\hline P200 & \[
\begin{gathered}
\text { FWH- } \\
500
\end{gathered}
\] & \[
\begin{aligned}
& \text { JJS- } \\
& 500
\end{aligned}
\] & 2061032.50 & L50S-500 & A50-P500 & \[
\begin{gathered}
\text { NOS- } \\
500
\end{gathered}
\] & 170M4014 & 170M4016 \\
\hline P250 & \[
\begin{gathered}
\text { FWH- } \\
600
\end{gathered}
\] & \[
\begin{aligned}
& \text { JJS- } \\
& 600
\end{aligned}
\] & 2062032.63 & L50S-600 & A50-P600 & \[
\begin{gathered}
\text { NOS- } \\
600
\end{gathered}
\] & 170M4016 & 170M4016 \\
\hline
\end{tabular}

Table 5.8: Frame size D, Line fuses, 380-480 V
\begin{tabular}{|c|c|c|c|c|}
\hline Size/Type & Bussmann PN* & Rating & Ferraz & Siba \\
\hline P315 & 170 M 4017 & \(700 \mathrm{~A}, 700 \mathrm{~V}\) & 6.9URD31D08A0700 & 2061032.700 \\
\hline P355 & 170M6013 & \(900 \mathrm{~A}, 700 \mathrm{~V}\) & 6.9URD33D08A0900 & 2063032.900 \\
\hline P400 & 170M6013 & \(900 \mathrm{~A}, 700 \mathrm{~V}\) & 6.9URD33D08A0900 & 2063032.900 \\
\hline P450 & 170M6013 & \(900 \mathrm{~A}, 700 \mathrm{~V}\) & 6.9URD33D08A0900 & 2063032.900 \\
\hline
\end{tabular}

Table 5.9: Frame size E, Line fuses, \(380-480 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Size/Type & Bussmann PN* & Rating & Siba & Internal Bussmann Option \\
\hline P500 & 170M7081 & \(1600 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.1600 & 170M7082 \\
\hline P560 & 170M7081 & \(1600 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.1600 & 170M7082 \\
\hline P630 & 170M7082 & 2000 A, 700 V & 2069532.2000 & 170M7082 \\
\hline P710 & 170M7082 & 2000 A, 700 V & 2069532.2000 & 170M7082 \\
\hline P800 & 170 M 7083 & \(2500 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.2500 & 170M7083 \\
\hline P1M0 & 170M7083 & \(2500 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.2500 & 170M7083 \\
\hline
\end{tabular}

Table 5.10: Frame size \(F\), Line fuses, \(380-480 \mathrm{~V}\)
\begin{tabular}{|lcc|}
\hline Size/Type & Bussmann PN* & Rating \\
\hline P500 & 170 M 8611 & \(1100 \mathrm{~A}, 1000 \mathrm{~V}\) \\
P560 & 170 M 8611 & \(1100 \mathrm{~A}, 1000 \mathrm{~V}\) \\
P630 & 170 M 6467 & \(1400 \mathrm{~A}, 700 \mathrm{~V}\) \\
P710 & 170 M 6467 & \(1400 \mathrm{~A}, 700 \mathrm{~V}\) \\
P800 & 170 M 8611 & \(1100 \mathrm{~A}, 1000 \mathrm{~V}\) \\
P1M0 & 170 M 6467 & \(1400 \mathrm{~A}, 700 \mathrm{~V}\) \\
\hline
\end{tabular}

Table 5.11: Frame size F, Inverter module DC Link Fuses, 380-480 V
*170M fuses from Bussmann shown use the \(-/ 80\) visual indicator, - TN/80 Type \(\mathrm{T},-/ 110\) or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use
**Any minimum 500 V UL listed fuse with associated current rating may be used to meet UL requirements.

\section*{525-690 V, frame sizes D, E and F}
\begin{tabular}{|lccccc|}
\hline Size/Type & \begin{tabular}{c} 
Bussmann \\
E125085 \\
JFHR2
\end{tabular} & Amps & \begin{tabular}{c} 
SIBA \\
E180276 \\
JFHR2
\end{tabular} & \begin{tabular}{c} 
Ferraz-Shawmut \\
E76491
\end{tabular} & \begin{tabular}{c} 
Internal \\
Option
\end{tabular} \\
JFHR2
\end{tabular}

Table 5.12: Frame size D, 525-690 V
\begin{tabular}{|lcccc|}
\hline Size/Type & Bussmann PN* & Rating & Ferraz & Siba \\
\hline P450 & \(170 M 4017\) & \(700 \mathrm{~A}, 700 \mathrm{~V}\) & 6.9 URD31D08A0700 & 2061032.700 \\
P500 & \(170 \mathrm{M4017}\) & \(700 \mathrm{~A}, 700 \mathrm{~V}\) & 6.9 URD31D08A0700 & 2061032.700 \\
P560 & 170 M 6013 & \(900 \mathrm{~A}, 700 \mathrm{~V}\) & 6.9 URD33D08A0900 & 2063032.900 \\
P630 & 170 M 6013 & \(900 \mathrm{~A}, 700 \mathrm{~V}\) & \(6.9 U R D 33 D 08 A 0900\) & 2063032.900 \\
\hline
\end{tabular}

Table 5.13: Frame size E, \(525-690 \mathrm{~V}\)
\begin{tabular}{|lcccc|}
\hline Size/Type & Bussmann PN* & Rating & Siba & Internal Bussmann Option \\
\hline P710 & 170M7081 & \(1600 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.1600 & 170 M 7082 \\
P800 & 170M7081 & \(1600 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.1600 & 170 M 7082 \\
P900 & 170 M 7081 & \(1600 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.1600 & 170 M 7082 \\
P1M0 & 170M7081 & \(1600 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.1600 & 170 M 7082 \\
P1M2 & 170M7082 & \(2000 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.2000 & 170 M 7082 \\
P1M4 & 170M7083 & \(2500 \mathrm{~A}, 700 \mathrm{~V}\) & 2069532.2500 & 170 M7083 \\
\hline
\end{tabular}

Table 5.14: Frame size F, Line fuses, \(525-690 \mathrm{~V}\)
\begin{tabular}{|lccc|}
\hline Size/Type & Bussmann PN* & \multicolumn{1}{c|}{ Rating } & Siba \\
\hline P710 & 170 M 8611 & \(1100 \mathrm{~A}, 1000 \mathrm{~V}\) & 2078132.1000 \\
P800 & 170 M 8611 & \(1100 \mathrm{~A}, 1000 \mathrm{~V}\) & 2078132.1000 \\
P900 & 170 M 8611 & \(1100 \mathrm{~A}, 1000 \mathrm{~V}\) & 2078132.1000 \\
P1M0 & 170 M 8611 & \(1100 \mathrm{~A}, 1000 \mathrm{~V}\) & 2078132.1000 \\
P1M2 & 170 M8611 & \(1100 \mathrm{~A}, 1000 \mathrm{~V}\) & 2078132.1000 \\
P1M4 & 170 M8611 & \(1100 \mathrm{~A}, 1000 \mathrm{~V}\) & 2078132.1000 \\
\hline
\end{tabular}

Table 5.15: Frame size F, Inverter module DC Link Fuses, 525-690 V
*170M fuses from Bussmann shown use the -/80 visual indicator, -TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use.
Suitable for use on a circuit capable of delivering not more than 100000 rms symmetrical amperes, 500/600/690 Volts maximum when protected by the above fuses.

\section*{Supplementary fuses}
\begin{tabular}{|lcc|}
\hline Frame size & Bussmann PN* & Rating \\
\hline D, E and F & KTK-4 & \(4 \mathrm{~A}, 600 \mathrm{~V}\) \\
\hline
\end{tabular}

Table 5.16: SMPS Fuse
\begin{tabular}{|lccc|}
\hline Size/Type & Bussmann PN* & LittelFuse & Rating \\
\hline P110-P315, 380-480 V & KTK-4 & & \(4 \mathrm{~A}, 600 \mathrm{~V}\) \\
P45K-P500, \(525-690 \mathrm{~V}\) & KTK-4 & \(4 \mathrm{~A}, 600 \mathrm{~V}\) \\
P355-P1M0, \(380-480 \mathrm{~V}\) & & KLK-15 & \(15 \mathrm{~A}, 600 \mathrm{~V}\) \\
P560-P1M4, \(525-690 \mathrm{~V}\) & KLK-15 & \(15 \mathrm{~A}, 600 \mathrm{~V}\) \\
\hline
\end{tabular}

Table 5.17: Fan Fuses
\begin{tabular}{|c|c|c|c|c|}
\hline Size/Type & & Bussmann PN* & Rating & Alternative Fuses \\
\hline P500-P1M0, 380-480 V & 2.5-4.0 A & LPJ-6 SP or SPI & \(6 \mathrm{~A}, 600 \mathrm{~V}\) & Any listed Class J Dual Element, Time Delay, 6A \\
\hline P710-P1M4, 525-690 V & & LPJ-10 SP or SPI & \(10 \mathrm{~A}, 600 \mathrm{~V}\) & Any listed Class J Dual Element, Time Delay, 10 A \\
\hline P500-P1M0, 380-480 V & 4.0-6.3 A & LPJ-10 SP or SPI & \(10 \mathrm{~A}, 600 \mathrm{~V}\) & Any listed Class J Dual Element, Time Delay, 10 A \\
\hline P710-P1M4, 525-690 V & & LPJ-15 SP or SPI & \(15 \mathrm{~A}, 600 \mathrm{~V}\) & Any listed Class J Dual Element, Time Delay, 15 A \\
\hline P500-P1M0, 380-480 V & 6.3-10 A & LPJ-15 SP or SPI & \(15 \mathrm{~A}, 600 \mathrm{~V}\) & Any listed Class J Dual Element, Time Delay, 15 A \\
\hline P710-P1M4, 525-690 V & & LPJ-20 SP or SPI & \(20 \mathrm{~A}, 600 \mathrm{~V}\) & Any listed Class J Dual Element, Time Delay, 20A \\
\hline P500-P1M0, 380-480 V & 10-16 A & LPJ-25 SP or SPI & 25 A, 600 V & Any listed Class J Dual Element, Time Delay, 25 A \\
\hline P710-P1M4, 525-690 V & & LPJ-20 SP or SPI & \(20 \mathrm{~A}, 600 \mathrm{~V}\) & Any listed Class J Dual Element, Time Delay, 20 A \\
\hline
\end{tabular}

Table 5.18: Manual Motor Controller Fuses
\begin{tabular}{|lcc|}
\hline Frame size & Bussmann PN* & Rating \\
\hline\(F\) & LPJ-30 SP or SPI & Alternative Fuses \\
\hline
\end{tabular}

Table 5.19: 30 A Fuse Protected Terminal Fuse
\begin{tabular}{|llrr|}
\hline Frame size & Bussmann PN* & Rating & Alternative Fuses \\
\hline\(F\) & LPJ-6 SP or SPI & \(6 \mathrm{~A}, 600 \mathrm{~V}\) & Any listed Class J Dual Element, Time \\
& & Delay, 6 A \\
\hline
\end{tabular}

Table 5.20: Control Transformer Fuse
\begin{tabular}{lcc|}
\hline Frame size & Bussmann PN* & Rating \\
\hline GMC-800MA & \(800 \mathrm{~mA}, 250 \mathrm{~V}\) \\
\hline
\end{tabular}

Table 5.21: NAMUR Fuse
\begin{tabular}{|lccc|}
\hline Frame size & Bussmann PN* & Rating & Alternative Fuses \\
\hline F & LP-CC-6 & \(6 \mathrm{~A}, 600 \mathrm{~V}\) & Any listed Class CC, 6 A \\
\hline
\end{tabular}

Table 5.22: Safety Relay Coil Fuse with PILS Relay

\subsection*{5.2.9 Control Terminals}

Drawing reference numbers:
1. 10 pole plug digital I/O.
2. 3 pole plug RS485 Bus.
3. 6 pole analog I/O.
4. USB Connection.


Illustration 5.18: Control terminals (all enclosures)

\subsection*{5.2.10 Control Cable Terminals}

To mount the cable to the terminal:
1) Max. \(0.4 \times 2.5 \mathrm{~mm}\)
1. Strip isolation of \(9-10 \mathrm{~mm}\)
2. Insert a screw driver \({ }^{1)}\) in the rectangular hole.
3. Insert the cable in the adjacent circular hole.
4. Remove the screw driver. The cable is now mounted to the terminal.

To remove the cable from the terminal:
1. Insert a screw driver \({ }^{1}\) ) in the square hole.
2. Pull out the cable.


5


\subsection*{5.2.11 Basic Wiring Example}
1. Mount terminals from the accessory bag to the front of the frequency converter.
2. Connect terminals 18 and 27 to +24 V (terminal \(12 / 13\) )

Default settings:
18 = latched start
27 = stop inverse


Illustration 5.19: Terminal 37 available with Safe Stop Function only!

\subsection*{5.2.12 Electrical Installation, Control Cables}


Illustration 5.20: Diagram showing all electrical terminals. (Terminal 37 present for units with Safe Stop Function only.)

Very long control cables and analog signals may in rare cases and depending on installation result in \(50 / 60 \mathrm{~Hz}\) earth loops due to noise from mains supply cables.

If this occurs, you may have to break the screen or insert a 100 nF capacitor between screen and chassis.

The digital and analog in- and outputs must be connected separately to the frequency converter common inputs (terminal 20,55,39) to avoid ground currents from both groups to affect other groups. For example, switching on the digital input may disturb the analog input signal.
NBM,
1. Use a clamp from the accessory bag to connect the screen to the frequency converter decoupling plate for control cables.

See section entitled Earthing of Screened/Armoured Control Cables for the correct termination of control cables.


\subsection*{5.2.13 Switches S201, S202, and S801}

Switches S201 (A53) and S202 (A54) are used to select a current (0-20 mA ) or a voltage ( 0 to 10 V ) configuration of the analog input terminals 53 and 54 respectively.

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

See drawing Diagram showing all electrical terminals in section Electrical Installation.

Default setting:
S201 (A53) = OFF (voltage input)
S202 (A54) = OFF (voltage input)
S801 (Bus termination) = OFF

NB!
It is recommended to only change switch position at power off.


\subsection*{5.3 Final Set-Up and Test}

To test the set-up and ensure that the frequency converter is running, follow these steps.

\section*{Step 1. Locate the motor name plate}

The motor is either star- \((\mathrm{Y})\) or delta- connected \((\Delta)\). This information is located on the motor name plate data.

Step 2. Enter the motor name plate data in this parameter list. To access this list first press the [QUICK MENU] key then select "Q2 Quick Setup".
\begin{tabular}{|l|l|l|}
\hline 1. & \begin{tabular}{l} 
Motor Power [kW] \\
or Motor Power [HP]
\end{tabular} & \begin{tabular}{l} 
par. 1-20 Motor Power \\
{\([\mathrm{kW}]\)} \\
par. 1-21 Motor Power \\
{\([\mathrm{HP}]\)}
\end{tabular} \\
\hline 2. & Motor Voltage & par. 1-22 Motor Voltage \\
\hline 3. & Motor Frequency & \begin{tabular}{l} 
par. 1-23 Motor Frequen- \\
cy
\end{tabular} \\
\hline 4. & Motor Current & par. 1-24 Motor Current \\
\hline 5. & Motor Nominal Speed & \begin{tabular}{l} 
par. 1-25 Motor Nominal \\
Speed
\end{tabular} \\
\hline
\end{tabular}


\section*{Step 3. Activate the Automatic Motor Adaptation (AMA)}

Performing an AMA will ensure optimum performance. The AMA measures the values from the motor model equivalent diagram.
1. Connect terminal 27 to terminal 12 or set par. 5-12 Terminal 27 Digital Input to 'No function' (par. 5-12 Terminal 27 Digital Input [0])
2. Activate the AMA par. 1-29 Automatic Motor Adaptation (AMA).
3. Choose between complete or reduced AMA. If an LC filter is mounted, run only the reduced AMA, or remove the LC filter during the AMA procedure.
4. Press the [OK] key. The display shows "Press [Hand on] to start".
5. Press the [Hand on] key. A progress bar indicates if the AMA is in progress.

\section*{Stop the AMA during operation}
1. Press the [OFF] key - the frequency converter enters into alarm mode and the display shows that the AMA was terminated by the user.

\section*{Successful AMA}
1. The display shows "Press [OK] to finish AMA".
2. Press the [OK] key to exit the AMA state.

\section*{Unsuccessful AMA}
1. The frequency converter enters into alarm mode. A description of the alarm can be found in the Troubleshooting section.
2. "Report Value" in the [Alarm Log] shows the last measuring sequence carried out by the AMA, before the frequency converter entered alarm mode. This number along with the description of the alarm will assist you in troubleshooting. If you contact Danfoss Service, make sure to mention number and alarm description.

Unsuccessful AMA is often caused by incorrectly registered motor name plate data or too big difference between the motor power size and the frequency converter power size.

Step 4. Set speed limit and ramp time

Set up the desired limits for speed and ramp time.
\begin{tabular}{|l|l|}
\hline Minimum Reference & par. 3-02 Minimum Reference \\
\hline Maximum Reference & par. 3-03 Maximum Reference \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Motor Speed Low Limit & \begin{tabular}{l} 
par. 4-11 Motor Speed Low Limit \\
[RPM] or par. 4-12 Motor Speed \\
Low Limit [Hz]
\end{tabular} \\
\hline Motor Speed High Limit & \begin{tabular}{l} 
par. 4-13 Motor Speed High Limit \\
[RPM] or par. 4-14 Motor Speed \\
High Limit [Hz]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Ramp-up Time 1 [s] & par. 3-41 Ramp 1 Ramp Up Time \\
\hline Ramp-down Time 1[s] & \begin{tabular}{l} 
par. 3-42 Ramp 1 Ramp Down \\
Time
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.4 Additional Connections}

\subsection*{5.4.1 Mains Disconnectors}

Assembling of IP55 / NEMA Type 12 (A5 housing) with mains disconnector

Mains switch is placed on left side on frame sizes B1, B2, C1 and C2. Mains switch on A5 frames is placed on right side

\begin{tabular}{|c|c|c|}
\hline Frame size: & Type: & Terminal connections: \\
\hline A5 & Kraus\&Naimer KG20A T303 &  \\
\hline B1 & Kraus\&Naimer KG64 T303 & 1 l 1 \\
\hline B2 & Kraus\&Naimer KG64 T303 & T1 T2 T3 3244 \\
\hline C1 37 kW & Kraus\&Naimer KG100 T303 & \multirow[t]{4}{*}{} \\
\hline C1 45-55 kW & Kraus\&Naimer KG105 T303 & \\
\hline C2 75 kW & Kraus\&Naimer KG160 T303 & \\
\hline C2 90 kW & Kraus\&Naimer KG250 T303 & \\
\hline
\end{tabular}

\subsection*{5.4.2 Mains Disconnectors - Frame Size D, E and F}
\begin{tabular}{|ccc|}
\hline Frame size & Power \& Voltage & Type \\
D1/D3 & P110-P132 380-480V \& P110-P160 525-690V & ABB OETL-NF200A or OT200U12-91 \\
D2/D4 & P160-P250 380-480V \& P200-P400 525-690V & ABB OETL-NF400A or OT400U12-91 \\
E1/E2 & P315 380-480V \& P450-P630 525-690V & ABB OETL-NF600A \\
E1/E2 & P355-P450 380-480V & ABB OETL-NF800A \\
F3 & P500 380-480V \& P710-P800 525-690V & Merlin Gerin NPJF36000S12AAYP \\
F3 & P560-P710 380-480V \& P900 525-690V & Merlin Gerin NRK36000S20AAYP \\
F4 & P800-P1M0 380-480V \& P1M0-P1M4 525-690V & Merlin Gerin NRK36000S20AAYP \\
\hline
\end{tabular}

\subsection*{5.4.3 F Frame circuit breakers}
\begin{tabular}{|ccc|}
\hline Frame size & Power \& Voltage & Type \\
F3 & P500 380-480V \& P710-P800 525-690V & Merlin Gerin NPJF36120U31AABSCYP \\
F3 & P630-P710 380-480V \& P900 525-690V & Merlin Gerin NRJF36200U31AABSCYP \\
F4 & P800 380-480V \& P1M0-P1M2 525-690V & Merlin Gerin NRJF36200U31AABSCYP \\
F4 & P1M0 380-480V & Merlin Gerin NRJF36250U31AABSCYP \\
\hline
\end{tabular}

\subsection*{5.4.4 F Frame Mains Contactors}
\begin{tabular}{|ccc|}
\hline Frame size & Power \& Voltage & Type \\
\hline F3 & P500-P560 \(380-480 \mathrm{~V} \&\) P710-P900 525-690V & Eaton XTCE650N22A \\
\hline F3 & P630 \(380-480 \mathrm{~V}\) & Eaton XTCE820N22A \\
F3 & P710 \(380-480 \mathrm{~V}\) & Eaton XTCEC14P22B \\
F4 & P1M0 525-690V & Eaton XTCE820N22A \\
F4 & P800-P1M0 \(380-480 \mathrm{~V}\) \& P1M4 525-690V & Eaton XTCEC14P22B \\
\hline
\end{tabular}

\subsection*{5.4.5 Brake Resistor Temperature Switch}

\section*{Frame size D-E-F}

Torque: \(0.5-0.6 \mathrm{Nm}\) ( 5 in -lbs)
Screw size: M3

This input can be used to monitor the temperature of an externally connected brake resistor. If the input between 104 and 106 is established, the frequency converter will trip on warning / alarm 27, "Brake IGBT". If the connection is closed between 104 and 105, the frequency converter will trip on warning / alarm 27, "Brake IGBT".
Normally closed: 104-106 (factory installed jumper)
Normally open: 104-105
\begin{tabular}{|ll|}
\hline Terminal No. & Function \\
\hline \(106,104,105\) & Brake resistor temperature switch. \\
\hline
\end{tabular}
If the temperature of the brake resistor gets too high
and the thermal switch drops out, the frequency con-
verter will stop braking. The motor will start coasting.
A KLIXON switch must be installed that is `normally
closed'. If this function is not used, 106 and 104 must
be short-circuited together.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ 1757A877.10 } \\
\hline 106 & 104 & 105 \\
NC & C & NO \\
\hline \multicolumn{3}{|c|}{} \\
\hline \multicolumn{3}{|c|}{} & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\subsection*{5.4.6 External Fan Supply}

\section*{Frame size D-E-F}

In case the frequency converter is supplied by DC or if the fan must run independently of the power supply, an external power supply can be applied. The connection is made on the power card.
\begin{tabular}{|ll|}
\hline Terminal No. & Function \\
\hline 100,101 & Auxiliary supply S, T \\
102,103 & Internal supply S, T \\
\hline
\end{tabular}

The connector located on the power card provides the connection of line voltage for the cooling fans. The fans are connected from factory to be supplied form a common AC line (jumpers between 100-102 and 101-103). If external supply is needed, the jumpers are removed and the supply is connected to terminals 100 and 101. A 5 Amp fuse should be used for protection. In UL applications this should be LittleFuse KLK-5 or equivalent.

\subsection*{5.4.7 Relay output}

\section*{Relay 1}
- Terminal 01: common
- Terminal 02: normal open 240 V AC
- Terminal 03: normal closed 240 V AC

Relay 1 and relay 2 are programmed in par. 5-40 Function Relay, par. 5-41 On Delay, Relay, and par. 5-42 Off Delay, Relay.

Additional relay outputs by using option module MCB 105.

\section*{Relay 2}
- Terminal 04: common
- Terminal 05: normal open 400 V AC
- Terminal 06: normal closed 240 V AC


\subsection*{5.4.8 Parallel Connection of Motors}

The frequency converter can control several parallel-connected motors. The total current consumption of the motors must not exceed the rated output current IInv for the frequency converter.

When motors are connected in parallel, par. 1-29 Automatic Motor Adaptation (AMA) cannot be used.

Problems may arise at start and at low RPM values if motor sizes are widely different because small motors' relatively high ohmic resistance in the stator calls for a higher voltage at start and at low RPM values.

The electronic thermal relay (ETR) of the frequency converter cannot be used as motor protection for the individual motor of systems with parallelconnected motors. Provide further motor protection by e.g. thermistors in each motor or individual thermal relays. (Circuit breakers are not suitable as protection).


\subsection*{5.4.9 Direction of Motor Rotation}

The default setting is clockwise rotation with the frequency converter output connected as follows.

Terminal 96 connected to U-phase
Terminal 97 connected to V-phase
Terminal 98 connected to W-phase

The direction of motor rotation is changed by switching two motor phases.

Motor rotation check can be performed using par. 1-28 Motor Rotation Check and following the steps shown in the display.


\subsection*{5.4.10 Motor Thermal Protection}

The electronic thermal relay in the frequency converter has received the UL-approval for single motor protection, when par. 1-90 Motor Thermal Protection is set for ETR Trip and par. 1-24 Motor Current is set to the rated motor current (see motor name plate).

\subsection*{5.4.11 Motor Insulation}

For motor cable lengths \(\leq\) the maximum cable length listed in the General Specifications tables the following motor insulation ratings are recommended because the peak voltage can be up to twice the DC link voltage, 2.8 times the mains voltage, due to transmission line effects in the motor cable. If a motor has lower insulation rating it recommended to use a du/ dt or sine wave filter.
\begin{tabular}{|ll|}
\hline Nominal Mains Voltage & Motor Insulation \\
\(U_{\mathrm{N}} \leq 420 \mathrm{~V}\) & Standard \(\mathrm{U}_{\mathrm{LL}}=1300 \mathrm{~V}\) \\
\(420 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 500 \mathrm{~V}\) & Reinforced \(\mathrm{U}_{\mathrm{LL}}=1600 \mathrm{~V}\) \\
\(500 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 600 \mathrm{~V}\) & Reinforced \(\mathrm{U}_{\mathrm{LL}}=1800 \mathrm{~V}\) \\
\(600 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 690 \mathrm{~V}\) & Reinforced \(\mathrm{U}_{\mathrm{LL}}=2000 \mathrm{~V}\) \\
\hline
\end{tabular}

\subsection*{5.4.12 Motor Bearing Currents}

It is generally recommended that motors of a rating 110 kW or higher operating via Variable Frequency Drives should have NDE (Non-Drive End) insulated bearings installed to eliminate circulating bearing currents due to the physical size of the motor. To minimize DE (Drive End) bearing and shaft currents proper grounding of the drive, motor, driven machine, and motor to the driven machine is required. Although failure due to bearing currents is low and very dependent on many different items, for security of operation the following are mitigation strategies which can be implemented.

\section*{Standard Mitigation Strategies:}
1. Use an insulated bearing
2. Apply rigorous installation procedures

Ensure the motor and load motor are aligned
Strictly follow the EMC Installation guideline
Reinforce the PE so the high frequency impedance is lower in the PE than the input power leads
Provide a good high frequency connection between the motor and the frequency converter for instance by screened cable which has a \(360^{\circ}\) connection in the motor and the frequency converter

Make sure that the impedance from frequency converter to building ground is lower that the grounding impedance of the machine. This can be difficult for pumps- Make a direct earth connection between the motor and load motor.
3. Apply conductive lubrication
4. Try to ensure the line voltage is balanced to ground. This can be difficult for \(\mathrm{IT}, \mathrm{T}, \mathrm{TN}\)-CS or Grounded leg systems
5. Use an insulated bearing as recommended by the motor manufacturer (note: Motors from reputable manufacturers will typically have these fitted as standard in motors of this size)

If found to be necessary and after consultation with Danfoss:
6. Lower the IGBT switching frequency
7. Modify the inverter waveform, \(60^{\circ} \mathrm{AVM}\) vs. SFAVM
8. Install a shaft grounding system or use an isolating coupling between motor and load
9. Use minimum speed settings if possible
10. Use a dU/dt or sinus filter

\subsection*{5.5 Installation of misc. connections}

\subsection*{5.5.1 RS 485 Bus Connection}

One or more frequency converters can be connected to a control (or master) using the RS485 standardized interface. Terminal 68 is connected to the \(P\) signal ( \(T X+, R X+\) ), while terminal 69 is connected to the \(N\) signal (TX-,RX-).

If more than one frequency converter is connected to a master, use parallel connections.


In order to avoid potential equalizing currents in the screen, earth the cable screen via terminal 61 , which is connected to the frame via an RC-link.

\section*{Bus termination}

The RS485 bus must be terminated by a resistor network at both ends. For this purpose, set switch S801 on the control card for "ON". For more information, see the paragraph Switches S201, S202, and S801.

Communication protocol must be set to par. 8-30 Protocol.

\subsection*{5.5.2 How to connect a PC to the frequency converter}

To control or program the frequency converter from a PC, install the PC-based Configuration Tool MCT 10.
The PC is connected via a standard (host/device) USB cable, or via the RS-485 interface as shown in the IVS 102 Drive Design Guide, chapter How to Install > Installation of misc. connections.

\section*{NB!}

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is connected to protection earth on the frequency converter. Use only an isolated laptop as PC connection to the USB connector on the frequency converter.


130BT308
Illustration 5.21: For control cable connections, see section on Control Terminals.

PC-based Configuration Tool MCT 10
All drives are equipped with a serial communication port. We provide a PC tool for communication between PC and frequency converter, PC-based Configuration Tool MCT 10.

\section*{MCT 10 Set-up Software}

MCT 10 has been designed as an easy to use interactive tool for setting parameters in our frequency converters. The PC-based Configuration Tool MCT 10 will be useful for:
- Planning a communication network off-line. MCT 10 contains a complete frequency converter database
- Commissioning frequency converters on line
- Saving settings for all frequency converters
- Replacing a frequency converter in a network
- Expanding an existing network
- Future developed drives will be supported

The PC-based Configuration Tool MCT 10 supports Profibus DP-V1 via a Master class 2 connection. It makes it possible to on line read/write parameters in a frequency converter via the Profibus network. This will eliminate the need for an extra communication network. See Operating Instructions, MG. 33.CX.YY and MN.90.EX.Yy for more information about the features supported by the Profibus DP V1 functions.

\section*{Save Drive Settings:}
1. Connect a PC to the unit via USB com port
2. Open PC-based Configuration Tool MCT 10
3. Choose "Read from drive"
4. Choose "Save as"

All parameters are now stored in the PC.
Load Drive Settings:
1. Connect a PC to the unit via USB com port
2. Open PC-based Configuration Tool MCT 10
3. Choose "Open"-stored files will be shown
4. Open the appropriate file
5. Choose "Write to drive"

The PC-based Configuration Tool MCT 10 modules
The following modules are included in the software package:
\begin{tabular}{|ll|}
\hline & MCT \(\mathbf{1 0}\) Set-up Software \\
& \begin{tabular}{l} 
Setting parameters \\
Copy to and from frequency converters \\
Documentation and print out of parameter settings incl. diagrams
\end{tabular} \\
& \begin{tabular}{l} 
Ext. User Interface \\
Preventive Maintenance Schedule \\
Clock settings \\
Timed Action Programming \\
Smart Logic Controller Set-up
\end{tabular} \\
\hline
\end{tabular}

\section*{Ordering number:}

Please order your CD containing the PC-based Configuration Tool MCT 10 using code number 130B1000.

MCT 10 can also be downloaded from the Danfoss Internet: http://www.danfoss.com/BusinessAreas/DrivesSolutions/Softwaredownload/DDPC+Software +Program.htm.

\section*{MCT 31}

The MCT 31 harmonic calculation PC tool enables easy estimation of the harmonic distortion in a given application. Both the harmonic distortion of Danfoss frequency converters as well as non-Danfoss frequency converters with different additional harmonic reduction devices, such as Danfoss AHF filters and 12-18-pulse rectifiers, can be calculated.

\section*{Ordering number:}

Please order your CD containing the MCT 31 PC tool using code number 130B1031.

MCT 31 can also be downloaded from the Danfoss Internet: http://www.danfoss.com/BusinessAreas/DrivesSolutions/Softwaredownload/DDPC+Software +Program.htm.

\subsection*{5.6 Safety}

\subsection*{5.6.1 High Voltage Test}

Carry out a high voltage test by short-circuiting terminals U, V, W, \(\mathrm{L}_{1}, \mathrm{~L}_{2}\) and \(\mathrm{L}_{3}\). Energize maximum 2.15 kV DC for 380-500V frequency converters and 2.525 kV DC for 525-690V frequency converters for one second between this short-circuit and the chassis.


When running high voltage tests of the entire installation, interrupt the mains and motor connection if the leakage currents are too high.

\subsection*{5.6.2 Safety Earth Connection}

The frequency converter has a high leakage current and must be earthed appropriately for safety reasons acording to EN 50178.
The earth leakage current from the frequency converter exceeds 3.5 mA . To ensure a good mechanical connection from the earth
cable to the earth connection (terminal 95 ), the cable cross-section must be at least \(10 \mathrm{~mm}^{2}\) or 2 rated earth wires terminated sepa-
rately.

\subsection*{5.7 EMC-correct Installation}

\subsection*{5.7.1 Electrical Installation - EMC Precautions}

The following is a guideline to good engineering practice when installing frequency converters. Follow these guidelines to comply with EN 61800-3 First environment. If the installation is in EN 61800-3 Second environment, i.e. industrial networks, or in an installation with its own transformer, deviation from these guidelines is allowed but not recommended. See also paragraphs CE Labelling, General Aspects of EMC Emission and EMC Test Results.

\section*{Good engineering practice to ensure EMC-correct electrical installation:}
- Use only braided screened/armoured motor cables and braided screened/armoured control cables. The screen should provide a minimum coverage of \(80 \%\). The screen material must be metal, not limited to but typically copper, aluminium, steel or lead. There are no special requirements for the mains cable.
- Installations using rigid metal conduits are not required to use screened cable, but the motor cable must be installed in conduit separate from the control and mains cables. Full connection of the conduit from the drive to the motor is required. The EMC performance of flexible conduits varies a lot and information from the manufacturer must be obtained.
- Connect the screen/armour/conduit to earth at both ends for motor cables as well as for control cables. In some cases, it is not possible to connect the screen in both ends. If so, connect the screen at the frequency converter. See also Earthing of Braided Screened/Armoured Control Cables.
- Avoid terminating the screen/armour with twisted ends (pigtails). It increases the high frequency impedance of the screen, which reduces its effectiveness at high frequencies. Use low impedance cable clamps or EMC cable glands instead.
- Avoid using unscreened/unarmoured motor or control cables inside cabinets housing the drive(s), whenever this can be avoided.

Leave the screen as close to the connectors as possible.

The illustration shows an example of an EMC-correct electrical installation of an IP 20 frequency converter. The frequency converter is fitted in an installation cabinet with an output contactor and connected to a PLC, which is installed in a separate cabinet. Other ways of doing the installation may have just as good an EMC performance, provided the above guide lines to engineering practice are followed.

If the installation is not carried out according to the guideline and if unscreened cables and control wires are used, some emission requirements are not complied with, although the immunity requirements are fulfilled. See the paragraph EMC test results.


Illustration 5.22: EMC-correct electrical installation of a frequency converter in cabinet.


Illustration 5.23: Electrical connection diagram.

\subsection*{5.7.2 Use of EMC-Correct Cables}

Danfoss recommends braided screened/armoured cables to optimise EMC immunity of the control cables and the EMC emission from the motor cables.

The ability of a cable to reduce the in- and outgoing radiation of electric noise depends on the transfer impedance \(\left(Z_{T}\right)\). The screen of a cable is normally designed to reduce the transfer of electric noise; however, a screen with a lower transfer impedance \(\left(Z_{T}\right)\) value is more effective than a screen with a higher transfer impedance \(\left(Z_{T}\right)\).

Transfer impedance \(\left(Z_{T}\right)\) is rarely stated by cable manufacturers but it is often possible to estimate transfer impedance \(\left(Z_{T}\right)\) by assessing the physical design of the cable.

\section*{Transfer impedance \(\left(\mathbf{Z}_{\mathrm{T}}\right)\) can be assessed on the basis of the following factors:}
- \(\quad\) The conductibility of the screen material.
- The contact resistance between the individual screen conductors.
- The screen coverage, i.e. the physical area of the cable covered by the screen - often stated as a percentage value.
- \(\quad\) Screen type, i.e. braided or twisted pattern.
a. Aluminium-clad with copper wire.
b. Twisted copper wire or armoured steel wire cable.
c. Single-layer braided copper wire with varying percentage screen coverage.
This is the typical Danfoss reference cable.
d. Double-layer braided copper wire.
e. Twin layer of braided copper wire with a magnetic, screened/ armoured intermediate layer.
f. Cable that runs in copper tube or steel tube.
g. Lead cable with 1.1 mm wall thickness.


\subsection*{5.7.3 Earthing of Screened/Armoured Control Cables}

Generally speaking, control cables must be braided screened/armoured and the screen must be connected by means of a cable clamp at both ends to the metal cabinet of the unit.

The drawing below indicates how correct earthing is carried out and what to do if in doubt.
a. Correct earthing

Control cables and cables for serial communication must be fitted with cable clamps at both ends to ensure the best possible electrical contact.
b. Wrong earthing

Do not use twisted cable ends (pigtails). They increase the screen impedance at high frequencies.
c. Protection with respect to earth potential between PLC and frequency converter
If the earth potential between the frequency converter and the PLC (etc.) is different, electric noise may occur that will disturb the entire system. Solve this problem by fitting an equalising cable, next to the control cable. Minimum cable cross-section: \(16 \mathrm{~mm}^{2}\).
d. For \(\mathbf{5 0 / 6 0} \mathbf{~ H z}\) earth loops

If very long control cables are used, \(50 / 60 \mathrm{~Hz}\) earth loops may occur. Solve this problem by connecting one end of the screen to earth via a 100 nF capacitor (keeping leads short).
e. Cables for serial communication

Eliminate low-frequency noise currents between two frequency converters by connecting one end of the screen to terminal 61. This terminal is connected to earth via an internal RC link. Use twisted-pair cables to reduce the differential mode interference between the conductors.


\subsection*{5.8.1 Residual Current Device}

You can use RCD relays, multiple protective earthing or earthing as extra protection, provided that local safety regulations are complied with. If an earth fault appears, a DC content may develop in the faulty current.
If RCD relays are used, you must observe local regulations. Relays must be suitable for protection of 3-phase equipment with a bridge rectifier and for a brief discharge on power-up see section Earth Leakage Current for further information.

\section*{6 Application Examples}

\subsection*{6.1.1 Start/Stop}

Terminal \(18=\) start/stop par. 5-10 Terminal 18 Digital Input [8] Start Terminal 27 = No operation par. 5-12 Terminal 27 Digital Input [0] No operation (Default coast inverse

Par. 5-10 Terminal 18 Digital Input \(=\) Start \((\) default \()\)
Par. 5-12 Terminal 27 Digital Input \(=\) coast inverse \((\) default \()\)


\subsection*{6.1.2 Pulse Start/Stop}

Terminal \(18=\) start/stop par. 5-10 Terminal 18 Digital Input [9] Latched start
Terminal 27= Stop par. 5-12 Terminal 27 Digital Input [6] Stop inverse

Par. 5-10 Terminal 18 Digital Input \(=\) Latched start
Par. 5-12 Terminal 27 Digital Input \(=\) Stop inverse


\subsection*{6.1.3 Potentiometer Reference}

Voltage reference via a potentiometer.

Par. 3-15 Reference 1 Source [1] = Analog Input 53
Par. 6-10 Terminal 53 Low Voltage \(=0\) Volt
Par. 6-11 Terminal 53 High Voltage \(=10\) Volt
Par. 6-14 Terminal 53 Low Ref./Feedb. Value \(=0\) RPM
Par. 6-15 Terminal 53 High Ref./Feedb. Value \(=1.500\) RPM
Switch S201 = OFF (U)


\subsection*{6.1.4 Automatic Motor Adaptation (AMA)}

AMA is an algorithm to measure the electrical motor parameters on a motor at standstill. This means that AMA itself does not supply any torque. AMA is useful when commissioning systems and optimising the adjustment of the frequency converter to the applied motor. This feature is particularly used where the default setting does not apply to the connected motor.
Par. 1-29 Automatic Motor Adaptation (AMA) allows a choice of complete AMA with determination of all electrical motor parameters or reduced AMA with determination of the stator resistance Rs only.
The duration of a total AMA varies from a few minutes on small motors to more than 15 minutes on large motors.

\section*{Limitations and preconditions:}
- For the AMA to determine the motor parameters optimally, enter the correct motor nameplate data in par. 1-20 Motor Power [kW] to par. 1-28 Motor Rotation Check.
- For the best adjustment of the frequency converter, carry out AMA on a cold motor. Repeated AMA runs may lead to a heating of the motor, which results in an increase of the stator resistance, Rs. Normally, this is not critical.
- AMA can only be carried out if the rated motor current is minimum \(35 \%\) of the rated output current of the frequency converter. AMA can be carried out on up to one oversize motor.
- It is possible to carry out a reduced AMA test with a Sine-wave filter installed. Avoid carrying out a complete AMA with a Sine-wave filter. If an overall setting is required, remove the Sine-wave filter while running a total AMA. After completion of the AMA, reinsert the Sine-wave filter.
- If motors are coupled in parallel, use only reduced AMA if any.
- Avoid running a complete AMA when using synchronous motors. If synchronous motors are applied, run a reduced AMA and manually set the extended motor data. The AMA function does not apply to permanent magnet motors.
- The frequency converter does not produce motor torque during an AMA. During an AMA, it is imperative that the application does not force the motor shaft to run, which is known to happen with e.g. wind milling in ventilation systems. This disturbs the AMA function.

\subsection*{6.1.5 Smart Logic Control}

New useful facility in the IVS 102 Drive frequency converter is the Smart Logic Control (SLC).
In applications where a PLC is generating a simple sequence the SLC may take over elementary tasks from the main control.
SLC is designed to act from event send to or generated in the frequency converter. The frequency converter will then perform the pre-programmed action.

\subsection*{6.1.6 Smart Logic Control Programming}

The Smart Logic Control (SLC) is essentially a sequence of user defined actions (see par. 13-52 SL Controller Action) executed by the SLC when the associated user defined event (see par. 13-51 SL Controller Event) is evaluated as TRUE by the SLC.
Events and actions are each numbered and are linked in pairs called states. This means that when event [1] is fulfilled (attains the value TRUE), action [1] is executed. After this, the conditions of event [2] will be evaluated and if evaluated TRUE, action [2]will be executed and so on. Events and actions are placed in array parameters.

Only one event will be evaluated at any time. If an event is evaluated as FALSE, nothing happens (in the SLC) during the present scan interval and no other events will be evaluated. This means that when the SLC starts, it evaluates event [1] (and only event [1]) each scan interval. Only when event [1] is evaluated TRUE, the SLC executes action [1] and starts evaluating event [2].

It is possible to program from 0 to 20 events and actions. When the last event / action has been executed, the sequence starts over again from event [1] / action [1]. The illustration shows an example with three events / actions.


\subsection*{6.1.7 SLC Application Example}

\section*{One sequence 1:}

Start - ramp up - run at reference speed 2 sec - ramp down and hold shaft until stop.


Set the ramping times in par. 3-41 Ramp 1 Ramp Up Time and par. 3-42 Ramp 1 Ramp Down Time to the wanted times
\(t_{\text {ramp }}=\frac{t_{a c c} \times n_{\text {norm }}(\text { par. } 1-25)}{\operatorname{ref}[R P M]}\)

Set term 27 to No Operation (par. 5-12 Terminal 27 Digital Input)
Set Preset reference 0 to first preset speed (par. 3-10 Preset Reference [0]) in percentage of Max reference speed (par. 3-03 Maximum Reference). Ex.: 60\%
Set preset reference 1 to second preset speed (par. 3-10 Preset Reference [1] Ex.: 0 \% (zero).
Set the timer 0 for constant running speed in par. 13-20 SL Controller Timer [0]. Ex.: 2 sec.

Set Event 1 in par. 13-51 SL Controller Event [1] to True [1]
Set Event 2 in par. 13-51 SL Controller Event [2] to On Reference [4]
Set Event 3 in par. 13-51 SL Controller Event [3] to Time Out O[30]
Set Event 4 in par. 13-51 SL Controller Event [1] to False [0]

Set Action 1 in par. 13-52 SL Controller Action [1] to Select preset O[10]
Set Action 2 in par. 13-52 SL Controller Action [2] to Start Timer O[29]
Set Action 3 in par. 13-52 SL Controller Action [3] to Select preset 1 [11]
Set Action 4 in par. 13-52 SL Controller Action [4] to No Action [1]


Set the Smart Logic Control in par. 13-00 SL Controller Mode to ON.

Start / stop command is applied on terminal 18. If stop signal is applied the frequency converter will ramp down and go into free mode.

\subsection*{6.1.8 BASIC Cascade Controller}


The BASIC Cascade Controller is used for pump applications where a certain pressure ("head") or level needs to be maintained over a wide dynamic range. Running a large pump at variable speed over a wide for range is not an ideal solution because of low pump efficiency and because there is a practical limit of about \(25 \%\) rated full load speed for running a pump.

In the BASIC Cascade Controller the frequency converter controls a variable speed motor as the variable speed pump (lead) and can stage up to two additional constant speed pumps on and off. By varying the speed of the initial pump, variable speed control of the entire system is provided. This maintains constant pressure while eliminating pressure surges, resulting in reduced system stress and quieter operation in pumping systems.

\section*{Fixed Lead Pump}

The motors must be of equal size. The BASIC Cascade Controller allows the frequency converter to control up to 3 equal size pumps using the drives two built-in relays. When the variable pump (lead) is connected directly to the frequency converter, the other 2 pumps are controlled by the two built-in relays. When lead pump alternations is enabled, pumps are connected to the built-in relays and the frequency converter is capable of operating 2 pumps.

\section*{Lead Pump Alternation}

The motors must be of equal size. This function makes it possible to cycle the frequency converter between the pumps in the system (maximum of 2 pumps). In this operation the run time between pumps is equalized reducing the required pump maintenance and increasing reliability and lifetime of the system. The alternation of the lead pump can take place at a command signal or at staging (adding another pump).

The command can be a manual alternation or an alternation event signal. If the alternation event is selected, the lead pump alternation takes place every time the event occurs. Selections include whenever an alternation timer expires, at a predefined time of day or when the lead pump goes into sleep mode. Staging is determined by the actual system load.

A separate parameter limits alternation only to take place if total capacity required is \(>50 \%\). Total pump capacity is determined as lead pump plus fixed speed pumps capacities.

\section*{Bandwidth Management}

In cascade control systems, to avoid frequent switching of fixed speed pumps, the desired system pressure is kept within a bandwidth rather than at a constant level. The Staging Bandwidth provides the required bandwidth for operation. When a large and quick change in system pressure occurs, the Override Bandwidth overrides the Staging Bandwidth to prevent immediate response to a short duration pressure change. An Override Bandwidth Timer can be programmed to prevent staging until the system pressure has stabilized and normal control established.

When the Cascade Controller is enabled and running normally and the frequency converter issues a trip alarm, the system head is maintained by staging and destaging fixed speed pumps. To prevent frequent staging and destaging and minimize pressure fluxuations, a wider Fixed Speed Bandwidth is used instead of the Staging bandwidth.

\subsection*{6.1.9 Pump Staging with Lead Pump Alternation}


With lead pump alternation enabled, a maximum of two pumps are controlled. At an alternation command, the lead pump will ramp to minimum frequency (fmin) and after a delay will ramp to maximum frequency (fmax). When the speed of the lead pump reaches the destaging frequency, the fixed speed pump will be cut out (de-staged). The lead pump continues to ramp up and then ramps down to a stop and the two relays are cut out.

After a time delay, the relay for the fixed speed pump cuts in (staged) and this pump becomes the new lead pump. The new lead pump ramps up to maximum speed and then down to minimum speed when ramping down and reaching the staging frequency, the old lead pump is now cut in (staged) on the mains as the new fixed speed pump.

If the lead pump has been running at minimum frequency (fmin) for a programmed amount of time, with a fixed speed pump running, the lead pump contributes little to the system. When the programmed value of the timer expires, the lead pump is removed, avoiding a deal heat water circulation problem.

\subsection*{6.1.10 System Status and Operation}

If the lead pump goes into Sleep Mode, the function is displayed on the LCP. It is possible to alternate the lead pump on a Sleep Mode condition.

When the cascade controller is enabled, the operation status for each pump and the cascade controller is displayed on the LCP. Information displayed includes:
- Pumps Status, is a read out of the status for the relays assigned to each pump. The display shows pumps that are disabled, off, running on the frequency converter or running on the mains/motor starter.
- Cascade Status, is a read out of the status for the Cascade Controller. The display shows the Cascade Controller is disabled, all pumps are off, and emergency has stopped all pumps, all pumps are running, fixed speed pumps are being staged/de-staged and lead pump alternation is occurring.
- De-stage at No-Flow ensures that all fixed speed pumps are stopped individually until the no-flow status disappears.

\subsection*{6.1.11 Fixed Variable Speed Pump Wiring Diagram}


\subsection*{6.1.12 Lead Pump Alternation Wiring Diagram}


Every pump must be connected to two contactors (K1/K2 and K3/K4) with a mechanical interlock. Thermal relays or other motor protection devices must be applied according to local regulation and/or individual demands.
- RELAY 1 (R1) and RELAY 2 (R2) are the built-in relays in the frequency converter.
- When all relays are de-energized, the first built in relay to be energized will cut in the contactor corresponding to the pump controlled by the relay. E.g. RELAY 1 cuts in contactor K1, which becomes the lead pump.
- K1 blocks for K2 via the mechanical interlock preventing mains to be connected to the output of the frequency converter (via K1).
- Auxiliary break contact on K1 prevents K3 to cut in.
- RELAY 2 controls contactor K4 for on/off control of the fixed speed pump.
- At alternation both relays de-energizes and now RELAY 2 will be energized as the first relay.

\subsection*{6.1.13 Cascade Controller Wiring Diagram}

The wiring diagram shows an example with the built in BASIC cascade controller with one variable speed pump (lead) and two fixed speed pumps, a 4-20 mA transmitter and System Safety Interlock.


\subsection*{6.1.14 Start/Stop conditions}

Commands assigned to digital inputs. See Digital Inputs, parameter group 5-1*.
\begin{tabular}{|lll|}
\hline & Variable speed pump (lead) & Fixed speed pumps \\
\hline Start (SYSTEM START /STOP) & Ramps up (if stopped and there is a demand) & Staging (if stopped and there is a demand) \\
\hline Lead Pump Start & Ramps up if SYSTEM START is active & Not affected \\
Coast (EMERGENCY STOP) & Coast to stop & Cut out (built in relays are de-energized) \\
Safety Interlock & Coast to stop & Cut out (built in relays are de-energized) \\
\hline
\end{tabular}

Function of buttons on LCP:
\begin{tabular}{|lll|}
\hline & Variable speed pump (lead) & Fixed speed pumps \\
\hline Hand On & \begin{tabular}{l} 
Ramps up (if stopped by a normal stop com- \\
mand) or stays in operation if already running
\end{tabular} & Destaging (if running) \\
Off & Ramps down & Ramps down \\
Auto On & \begin{tabular}{l} 
Starts and stops according to commands via ter- \\
\\
\\
\end{tabular} minals or serial bus & \\
\hline
\end{tabular}

\section*{7 RS-485 Installation and Set-up}

\subsection*{7.1 RS-485 Installation and Set-up}

\subsection*{7.1.1 Overview}

RS-485 is a two-wire bus interface compatible with multi-drop network topology, i.e. nodes can be connected as a bus, or via drop cables from a common trunk line. A total of 32 nodes can be connected to one network segment.
Network segments are divided up by repeaters. Please note that each repeater functions as a node within the segment in which it is installed. Each node connected within a given network must have a unique node address, across all segments.
Terminate each segment at both ends, using either the termination switch (S801) of the frequency converters or a biased termination resistor network. Always use screened twisted pair (STP) cable for bus cabling, and always follow good common installation practice.
Low-impedance ground connection of the screen at every node is very important, including at high frequencies. This can be achieved by connecting a large surface of the screen to ground, for example by means of a cable clamp or a conductive cable gland. It may be necessary to apply potentialequalizing cables to maintain the same ground potential throughout the network, particularly in installations where there are long lengths of cable.
To prevent impedance mismatch, always use the same type of cable throughout the entire network. When connecting a motor to the frequency converter, always use screened motor cable.

\section*{Cable: Screened twisted pair (STP)}

Impedance: 120 Ohm
Cable length: Max. 1200 m (including drop lines)
Max. 500 m station-to-station

\subsection*{7.1.2 Network connection}

\section*{Connect the frequency converter to the RS-485 network as follows (see also diagram)}
1. Connect signal wires to terminal \(68(\mathrm{P}+)\) and terminal \(69(\mathrm{~N}-)\) on the main control board of the frequency converter.
2. Connect the cable screen to the cable clamps.


NB!
Screened, twisted-pair cables are recommended in order to reduce noise between conductors.


Illustration 7.1: Network Terminal Connection


Illustration 7.2: Control card terminals

\subsection*{7.1.3 Frequency converter hardware setup}

Use the terminator dip switch on the main control board of the frequency converter to terminate the RS-485 bus.

130BA272.10


Illustration 7.3: Terminator Switch Factory Setting

The factory setting for the dip switch is OFF.

\subsection*{7.1.4 Frequency Converter Parameter Settings for Modbus Communication}

The following parameters apply to the RS-485 interface (FC-port):
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Parameter \\
Number
\end{tabular} & Parameter name & Function \\
\hline 8-30 & Protocol & Select the application protocol to run on the RS-485 interface \\
\hline 8-31 & Address & Set the node address. Note: The address range depends on the protocol selected in par. 8-30 Protocol \\
\hline 8-32 & Baud Rate & Set the baud rate. Note: The default baud rate depends on the protocol selected in par. 8-30 Protocol \\
\hline 8-33 & PC port parity/Stop bits & Set the parity and number of stop bits. Note: The default selection depends on the protocol selected in par. 8-30 Protocol \\
\hline 8-35 & Min. response delay & Specify a minimum delay time between receiving a request and transmitting a response. This can be used for overcoming modem turnaround delays. \\
\hline 8-36 & Max. response delay & Specify a maximum delay time between transmitting a request and receiving a response. \\
\hline 8-37 & Max. inter-char delay & Specify a maximum delay time between two received bytes to ensure timeout if transmission is interrupted. \\
\hline
\end{tabular}

\subsection*{7.1.5 EMC Precautions}

The following EMC precautions are recommended in order to achieve interference-free operation of the RS-485 network.
NB!
\begin{tabular}{l} 
Relevant national and local regulations, for example regarding protective earth connection, must be observed. The RS-485 communi- \\
cation cable must be kept away from motor and brake resistor cables to avoid coupling of high frequency noise from one cable to \\
another. Normally a distance of 200 mm ( 8 inches) is sufficient, but keeping the greatest possible distance between the cables is \\
generally recommended, especially where cables run in parallel over long distances. When crossing is unavoidable, the RS-485 cable \\
must cross motor and brake resistor cables at an angle of 90 degrees.
\end{tabular}


\subsection*{7.2 FC Protocol Overview}

The FC protocol, also referred to as FC bus or Standard bus, is the Danfoss standard fieldbus. It defines an access technique according to the masterslave principle for communications via a serial bus.
One master and a maximum of 126 slaves can be connected to the bus. The individual slaves are selected by the master via an address character in the telegram. A slave itself can never transmit without first being requested to do so, and direct message transfer between the individual slaves is not possible. Communications occur in the half-duplex mode.
The master function cannot be transferred to another node (single-master system).

The physical layer is RS-485, thus utilizing the RS-485 port built into the frequency converter. The FC protocol supports different telegram formats; a short format of 8 bytes for process data, and a long format of 16 bytes that also includes a parameter channel. A third telegram format is used for texts.

\subsection*{7.2.1 FC with Modbus RTU}

The FC protocol provides access to the Control Word and Bus Reference of the frequency converter.

The Control Word allows the Modbus master to control several important functions of the frequency converter:
- Start
- Stop of the frequency converter in various ways:

Coast stop
Quick stop
DC Brake stop
Normal (ramp) stop
- Reset after a fault trip
- Run at a variety of preset speeds
- Run in reverse
- Change of the active set-up
- Control of the two relays built into the frequency converter

The Bus Reference is commonly used for speed control. It is also possible to access the parameters, read their values, and where possible, write values to them. This permits a range of control options, including controlling the setpoint of the frequency converter when its internal PID controller is used.

\subsection*{7.3 Network Configuration}

\subsection*{7.3.1 Frequency Converter Set-up}

Set the following parameters to enable the FC protocol for the frequency converter.
\begin{tabular}{|lll|}
\hline \begin{tabular}{l} 
Parameter \\
Number
\end{tabular} & \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & Setting \\
\hline \(8-30\) & Protocol & FC \\
\(8-31\) & Address & \(1-126\) \\
\(8-32\) & Baud Rate & \(2400-115200\) \\
\(8-33\) & \begin{tabular}{l} 
Parity/Stop \\
bits
\end{tabular} & Even parity, 1 stop bit (default) \\
& & \\
\hline
\end{tabular}

\subsection*{7.4 FC Protocol Message Framing Structure}

\subsection*{7.4.1 Content of a Character (byte)}

Each character transferred begins with a start bit. Then 8 data bits are transferred, corresponding to a byte. Each character is secured via a parity bit, which is set at " 1 " when it reaches parity (i.e. when there is an equal number of 1 's in the 8 data bits and the parity bit in total). A character is completed by a stop bit, thus consisting of 11 bits in all.


\subsection*{7.4.2 Telegram Structure}

Each telegram begins with a start character (STX)=02 Hex, followed by a byte denoting the telegram length (LGE) and a byte denoting the frequency converter address (ADR). A number of data bytes (variable, depending on the type of telegram) follows. The telegram is completed by a data control byte (BCC).


\subsection*{7.4.3 Telegram Length (LGE)}

The telegram length is the number of data bytes plus the address byte ADR and the data control byte BCC.

The length of telegrams with 4 data bytes is
\[
\text { LGE }=4+1+1=6 \text { bytes }
\]

The length of telegrams with 12 data bytes is LGE \(=12+1+1=14\) bytes

The length of telegrams containing texts is
\({ }^{1)}\) The 10 represents the fixed characters, while the " \(n\) "" is variable (depending on the length of the text).

\subsection*{7.4.4 Frequency Converter Address (ADR)}

Two different address formats are used.
The address range of the frequency converter is either 1-31 or 1-126.
1. Address format 1-31:

Bit \(7=0\) (address format 1-31 active)
Bit 6 is not used
Bit \(5=1\) : Broadcast, address bits ( \(0-4\) ) are not used
Bit \(5=0\) : No Broadcast
Bit 0-4 = Frequency converter address 1-31
2. Address format 1-126:

Bit \(7=1\) (address format 1-126 active)
Bit 0-6 = Frequency converter address 1-126
Bit 0-6 \(=0\) Broadcast

The slave returns the address byte unchanged to the master in the response telegram.

\subsection*{7.4.5 Data Control Byte (BCC)}

The checksum is calculated as an XOR-function. Before the first byte in the telegram is received, the Calculated Checksum is 0 .

\subsection*{7.4.6 The Data Field}

The structure of data blocks depends on the type of telegram. There are three telegram types, and the type applies for both control telegrams (master=>slave) and response telegrams (slave=>master).

The three types of telegram are:

Process block (PCD):
The PCD is made up of a data block of four bytes ( 2 words) and contains:
- Control word and reference value (from master to slave)
- Status word and present output frequency (from slave to master).


Parameter block:
The parameter block is used to transfer parameters between master and slave. The data block is made up of 12 bytes ( 6 words) and also contains the process block.


Text block:
The text block is used to read or write texts via the data block.


\subsection*{7.4.7 The PKE Field}

The PKE field contains two sub-fields: Parameter command and response AK, and Parameter number PNU:


Bits no. 12-15 transfer parameter commands from master to slave and return processed slave responses to the master.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Parameter commands master \(\Rightarrow\) slave} \\
\hline Bit no. & & & & Parameter command \\
\hline 15 & 14 & 13 & 12 & \\
\hline 0 & 0 & 0 & 0 & No command \\
\hline 0 & 0 & 0 & 1 & Read parameter value \\
\hline 0 & 0 & 1 & 0 & Write parameter value in RAM (word) \\
\hline 0 & 0 & 1 & 1 & Write parameter value in RAM (double word) \\
\hline 1 & 1 & 0 & 1 & Write parameter value in RAM and EEprom (double word) \\
\hline 1 & 1 & 1 & 0 & Write parameter value in RAM and EEprom (word) \\
\hline 1 & 1 & 1 & 1 & Read/write text \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline \multicolumn{2}{l}{\begin{tabular}{l} 
Response slave \(\Rightarrow\) master \\
Bit no.
\end{tabular}} & \multicolumn{4}{l}{ Response } \\
\hline 15 & 14 & 13 & 12 & \\
0 & 0 & 0 & 0 & No response \\
0 & 0 & 0 & 1 & Parameter value transferred (word) \\
0 & 0 & 1 & 0 & Parameter value transferred (double word) \\
0 & 1 & 1 & 1 & Command cannot be performed \\
1 & 1 & 1 & 1 & text transferred \\
\hline
\end{tabular}

If the command cannot be performed, the slave sends this response:
0111 Command cannot be performed
- and issues the following fault report in the parameter value (PWE):
\begin{tabular}{|cl|}
\hline PWE low (Hex) & Fault Report \\
\hline 0 & The parameter number used does not exit \\
1 & There is no write access to the defined parameter \\
2 & Data value exceeds the parameter's limits \\
\hline 3 & The sub index used does not exit \\
4 & The parameter is not the array type \\
\hline 5 & The data type does not match the defined parameter \\
11 & \begin{tabular}{l} 
Data change in the defined parameter is not possible in the frequency converter's present mode. Certain parameters \\
can only be changed when the motor is turned off
\end{tabular} \\
\hline 82 & There is no bus access to the defined parameter \\
\hline 83 & Data change is not possible because factory setup is selected \\
\hline
\end{tabular}

\subsection*{7.4.8 Parameter Number (PNU)}

Bits no. 0-11 transfer parameter numbers. The function of the relevant parameter is defined in the parameter description in the chapter How to Programme.

\subsection*{7.4.9 Index (IND)}

The index is used together with the parameter number to read/write-access parameters with an index, e.g. par. 15-30 A/arm Log: Error Code. The index consists of 2 bytes, a low byte and a high byte.

Only the low byte is used as an index.

\subsection*{7.4.10 Parameter Value (PWE)}

The parameter value block consists of 2 words ( 4 bytes), and the value depends on the defined command (AK). The master prompts for a parameter value when the PWE block contains no value. To change a parameter value (write), write the new value in the PWE block and send from the master to the slave.

When a slave responds to a parameter request (read command), the present parameter value in the PWE block is transferred and returned to the master. If a parameter contains not a numerical value but several data options, e.g. par. 0-01 Language where [0] corresponds to English, and [4] corresponds to Danish, select the data value by entering the value in the PWE block. See Example - Selecting a data value. Serial communication is only capable of reading parameters containing data type 9 (text string).

Par. 15-40 FC Type to par. 15-53 Power Card Serial Number contain data type 9.
For example, read the unit size and mains voltage range in par. 15-40 FC Type. When a text string is transferred (read), the length of the telegram is variable, and the texts are of different lengths. The telegram length is defined in the second byte of the telegram, LGE. When using text transfer the index character indicates whether it is a read or a write command.

To read a text via the PWE block, set the parameter command (AK) to 'F' Hex. The index character high-byte must be " 4 ".

Some parameters contain text that can be written to via the serial bus. To write a text via the PWE block, set the parameter command (AK) to ' F ' Hex. The index characters high-byte must be " 5 ".


\subsection*{7.4.11 Data Types Supported by the Frequency Converter}
\begin{tabular}{|ll|}
\hline Data types & Description \\
\hline 3 & Integer 16 \\
4 & Integer 32 \\
5 & Unsigned 8 \\
6 & Unsigned 16 \\
7 & Unsigned 32 \\
9 & Text string \\
10 & Byte string \\
13 & Time difference \\
33 & Reserved \\
35 & Bit sequence \\
\hline
\end{tabular}

Unsigned means that there is no operational sign in the telegram.

\subsection*{7.4.12 Conversion}

The various attributes of each parameter are displayed in the section Factory Settings. Parameter values are transferred as whole numbers only. Conversion factors are therefore used to transfer decimals.

Par. 4-12 Motor Speed Low Limit [Hz] has a conversion factor of 0.1. To preset the minimum frequency to 10 Hz , transfer the value 100. A conversion factor of 0.1 means that the value transferred is multiplied by 0.1 . The value 100 is thus perceived as 10.0 .
\begin{tabular}{|ll|}
\hline Conversion table & \\
Conversion index & Conversion factor \\
\hline 74 & 0.1 \\
2 & 100 \\
1 & 10 \\
0 & 1 \\
-1 & 0.1 \\
-2 & 0.01 \\
-3 & 0.001 \\
-4 & 0.0001 \\
-5 & 0.00001 \\
\hline
\end{tabular}

\subsection*{7.4.13 Process Words (PCD)}

The block of process words is divided into two blocks of 16 bits, which always occur in the defined sequence.
\begin{tabular}{|lc|}
\hline & PCD 1 \\
Control telegram (master \(\Rightarrow\) slave Control word) & PCD 2 \\
\hline Control telegram (slave \(\Rightarrow\) master) Status word & Reference-value \\
& \\
\hline
\end{tabular}

\subsection*{7.5 Examples}

\subsection*{7.5.1 Writing a Parameter Value}

Change par. 4-14 Motor Speed High Limit [Hz] to 100 Hz . Write the data in EEPROM.

PKE = E19E Hex - Write single word in par. 4-14 Motor Speed High Limit [ Hz ]
IND \(=0000 \mathrm{Hex}\)
PWEHIGH \(=0000\) Hex
PWELOW = 03E8 Hex - Data value 1000, corresponding to 100 Hz , see Conversion.

Note: par. 4-14 Motor Speed High Limit [Hz] is a single word, and the parameter command for write in EEPROM is " \(E\) ". Parameter number 4-14 is 19E in hexadecimal.

The response from the slave to the master will be:

The telegram will look like this:


\subsection*{7.5.2 Reading a Parameter Value}

Read the value in par. 3-41 Ramp 1 Ramp Up Time

PKE = 1155 Hex - Read parameter value in par. 3-41 Ramp 1 Ramp Up Time
IND \(=0000 \mathrm{Hex}\)
PWEHIGH \(=0000\) Hex
PWELOW = 0000 Hex

If the value in par. 3-41 Ramp 1 Ramp Up Time is 10 s, the response from the slave to the master will be:


\subsection*{7.6 Modbus RTU Overview}

\subsection*{7.6.1 Assumptions}

These operating instructions assume that the installed controller supports the interfaces in this document and that all the requirements stipulated in the controller, as well as the frequency converter, are strictly observed, along with all limitations therein.

\subsection*{7.6.2 What the User Should Already Know}

The Modbus RTU (Remote Terminal Unit) is designed to communicate with any controller that supports the interfaces defined in this document. It is assumed that the user has full knowledge of the capabilities and limitations of the controller.

\subsection*{7.6.3 Modbus RTU Overview}

Regardless of the type of physical communication networks, the Modbus RTU Overview describes the process a controller uses to request access to another device. This includes how it will respond to requests from another device, and how errors will be detected and reported. It also establishes a common format for the layout and contents of message fields.
During communications over a Modbus RTU network, the protocol determines how each controller will learn its device address, recognise a message addressed to it, determine the kind of action to be taken, and extract any data or other information contained in the message. If a reply is required, the controller will construct the reply message and send it.
Controllers communicate using a master-slave technique in which only one device (the master) can initiate transactions (called queries). The other devices (slaves) respond by supplying the requested data to the master, or by taking the action requested in the query.
The master can address individual slaves, or can initiate a broadcast message to all slaves. Slaves return a message (called a response) to queries that are addressed to them individually. No responses are returned to broadcast queries from the master. The Modbus RTU protocol establishes the format for the master's query by placing into it the device (or broadcast) address, a function code defining the requested action, any data to be sent, and an error-checking field. The slave's response message is also constructed using Modbus protocol. It contains fields confirming the action taken, any data to be returned, and an error-checking field. If an error occurs in receipt of the message, or if the slave is unable to perform the requested action, the slave will construct an error message and send it in response, or a time-out will occur.

\subsection*{7.6.4 Frequency Converter with Modbus RTU}

The frequency converter communicates in Modbus RTU format over the built-in RS-485 interface. Modbus RTU provides access to the Control Word and Bus Reference of the frequency converter.

The Control Word allows the Modbus master to control several important functions of the frequency converter:
- Start
- \(\quad\) Stop of the frequency converter in various ways:

Coast stop
Quick stop
DC Brake stop
Normal (ramp) stop
- Reset after a fault trip
- Run at a variety of preset speeds
- Run in reverse
- Change the active set-up
- Control the frequency converter's built-in relay

The Bus Reference is commonly used for speed control. It is also possible to access the parameters, read their values, and where possible, write values to them. This permits a range of control options, including controlling the setpoint of the frequency converter when its internal PI controller is used.

\subsection*{7.7 Network Configuration}

To enable Modbus RTU on the frequency converter, set the following parameters:
\begin{tabular}{|lll|}
\hline Parameter Number & Parameter name & Setting \\
\hline \(8-30\) & Protocol & Modbus RTU \\
\(8-31\) & Address & \(1-247\) \\
\(8-32\) & Baud Rate & \(2400-115200\) \\
\(8-33\) & Parity/Stop bits & Even parity, 1 stop bit (default) \\
\hline
\end{tabular}

\subsection*{7.8 Modbus RTU Message Framing Structure}

\subsection*{7.8.1 Frequency Converter with Modbus RTU}

The controllers are set up to communicate on the Modbus network using RTU (Remote Terminal Unit) mode, with each byte in a message containing two 4-bit hexadecimal characters. The format for each byte is shown below.

\begin{tabular}{|l|l|}
\hline Coding System & 8-bit binary, hexadecimal 0-9, A-F. Two hexadecimal characters contained in each 8-bit field of the \\
message
\end{tabular}\(|\)\begin{tabular}{ll} 
Bits Per Byte & \begin{tabular}{l}
1 start bit \\
8 data bits, least significant bit sent first \\
1 bit for even/odd parity; no bit for no parity \\
1 stop bit if parity is used; 2 bits if no parity
\end{tabular} \\
\hline Error Check Field & Cyclical Redundancy Check (CRC) \\
\hline
\end{tabular}

\subsection*{7.8.2 Modbus RTU Message Structure}

The transmitting device places a Modbus RTU message into a frame with a known beginning and ending point. This allows receiving devices to begin at the start of the message, read the address portion, determine which device is addressed (or all devices, if the message is broadcast), and to recognise when the message is completed. Partial messages are detected and errors set as a result. Characters for transmission must be in hexadecimal 00 to FF format in each field. The frequency converter continuously monitors the network bus, also during 'silent' intervals. When the first field (the address field) is received, each frequency converter or device decodes it to determine which device is being addressed. Modbus RTU messages addressed to zero are broadcast messages. No response is permitted for broadcast messages. A typical message frame is shown below.

Typical Modbus RTU Message Structure
\begin{tabular}{|c|c|c|c|c|c|}
\hline Start & Address & Function & Data & CRC check & End \\
\hline T1-T2-T3-T4 & 8 bits & 8 bits & \(\mathrm{N} \times 8\) bits & 16 bits & T1-T2-T3-T4 \\
\hline
\end{tabular}

\subsection*{7.8.3 Start / Stop Field}

\footnotetext{
Messages start with a silent period of at least 3.5 character intervals. This is implemented as a multiple of character intervals at the selected network baud rate (shown as Start T1-T2-T3-T4). The first field to be transmitted is the device address. Following the last transmitted character, a similar period of at least 3.5 character intervals marks the end of the message. A new message can begin after this period. The entire message frame must be transmitted
}
as a continuous stream. If a silent period of more than 1.5 character intervals occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the address field of a new message. Similarly, if a new message begins prior to 3.5 character intervals after a previous message, the receiving device will consider it a continuation of the previous message. This will cause a time-out (no response from the slave), since the value in the final CRC field will not be valid for the combined messages.

\subsection*{7.8.4 Address Field}

The address field of a message frame contains 8 bits. Valid slave device addresses are in the range of \(0-247\) decimal. The individual slave devices are assigned addresses in the range of \(1-247\). ( 0 is reserved for broadcast mode, which all slaves recognize.) A master addresses a slave by placing the slave address in the address field of the message. When the slave sends its response, it places its own address in this address field to let the master know which slave is responding.

\subsection*{7.8.5 Function Field}

The function field of a message frame contains 8 bits. Valid codes are in the range of 1-FF. Function fields are used to send messages between master and slave. When a message is sent from a master to a slave device, the function code field tells the slave what kind of action to perform. When the slave responds to the master, it uses the function code field to indicate either a normal (error-free) response, or that some kind of error occurred (called an exception response). For a normal response, the slave simply echoes the original function code. For an exception response, the slave returns a code that is equivalent to the original function code with its most significant bit set to logic 1 . In addition, the slave places a unique code into the data field of the response message. This tells the master what kind of error occurred, or the reason for the exception. Please also refer to the sections Function Codes Supported by Modbus RTU and Exception Codes.

\subsection*{7.8.6 Data Field}

The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. These are made up of one RTU character. The data field of messages sent from a master to slave device contains additional information which the slave must use to take the action defined by the function code. This can include items such as coil or register addresses, the quantity of items to be handled, and the count of actual data bytes in the field.

\subsection*{7.8.7 CRC Check Field}

Messages include an error-checking field, operating on the basis of a Cyclical Redundancy Check (CRC) method. The CRC field checks the contents of the entire message. It is applied regardless of any parity check method used for the individual characters of the message. The CRC value is calculated by the transmitting device, which appends the CRC as the last field in the message. The receiving device recalculates a CRC during receipt of the message and compares the calculated value to the actual value received in the CRC field. If the two values are unequal, a bus time-out results. The error-checking field contains a 16 -bit binary value implemented as two 8 -bit bytes. When this is done, the low-order byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the last byte sent in the message.

\subsection*{7.8.8 Coil Register Addressing}

In Modbus, all data are organized in coils and holding registers. Coils hold a single bit, whereas holding registers hold a 2-byte word (i.e. 16 bits). All data addresses in Modbus messages are referenced to zero. The first occurrence of a data item is addressed as item number zero. For example: The coil known as 'coil 1 ' in a programmable controller is addressed as coil 0000 in the data address field of a Modbus message. Coil 127 decimal is addressed as coil 007EHEX (126 decimal).
Holding register 40001 is addressed as register 0000 in the data address field of the message. The function code field already specifies a 'holding register' operation. Therefore, the ' 4 XXXX' reference is implicit. Holding register 40108 is addressed as register 006BHEX (107 decimal).
\begin{tabular}{|c|c|c|}
\hline Coil Number & Description & Signal Direction \\
\hline 1-16 & Frequency converter control word (see table below) & Master to slave \\
\hline 17-32 & Frequency converter speed or set-point reference Range 0x0 - 0xFFFF (-200\% ... ~200\%) & Master to slave \\
\hline 33-48 & Frequency converter status word (see table below) & Slave to master \\
\hline 49-64 & Open loop mode: Frequency converter output frequency Closed loop mode: Frequency converter feedback signal & Slave to master \\
\hline 65 & Parameter write control (master to slave)
\[
\begin{array}{ll}
0= & \text { Parameter changes are written to the RAM of the frequency converter } \\
1= & \text { Parameter changes are written to the RAM and EEPROM of the frequen- } \\
& \text { cy converter. }
\end{array}
\] & Master to slave \\
\hline 66-65536 & Reserved & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Coil & \(\mathbf{0}\) & \(\mathbf{1}\) \\
01 & Preset reference LSB & \\
02 & Preset reference MSB & \\
03 & DC brake & No DC brake \\
04 & Coast stop & No coast stop \\
05 & Quick stop & No quick stop \\
\hline 06 & Freeze freq. & No freeze freq. \\
07 & Ramp stop & Start \\
\hline 08 & No reset & Reset \\
09 & No jog & Jog \\
10 & Ramp 1 & Ramp 2 \\
11 & Data not valid & Data valid \\
12 & Relay 1 off & Relay 1 on \\
13 & Relay 2 off & Relay 2 on \\
\hline 14 & Set up LSB & \\
\hline 15 & Set up MSB & \\
\hline 16 & No reversing & Reversing \\
\hline Frequency converter control word (FC profile) \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Coil & \(\mathbf{0}\) & 1 \\
33 & Control not ready & Control ready \\
34 & \begin{tabular}{l} 
Frequency converter not \\
ready
\end{tabular} & Frequency converter ready \\
35 & Coasting stop & Safety closed \\
36 & No alarm & Alarm \\
37 & Not used & Not used \\
38 & Not used & Not used \\
39 & Not used & Not used \\
40 & No warning & Warning \\
41 & Not at reference & At reference \\
\hline 42 & Hand mode & Auto mode \\
43 & Out of freq. range & In frequency range \\
\hline 44 & Stopped & Running \\
\hline 45 & Not used & Not used \\
\hline 46 & No voltage warning & Voltage warning \\
\hline 47 & Not in current limit & Current limit \\
\hline 48 & No thermal warning & Thermal warning \\
\hline Frequency converter status word (FC profile) \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Holding registers & \\
\hline Register Number & Description \\
\(00001-00006\) & Reserved \\
00007 & Last error code from an FC data object interface \\
00008 & Reserved \\
\hline 00009 & Parameter index* \\
\(00010-00990\) & 000 parameter group (parameters 001 through 099) \\
\(01000-01990\) & 100 parameter group (parameters 100 through 199) \\
\hline \(02000-02990\) & 200 parameter group (parameters 200 through 299) \\
\hline \(03000-03990\) & 300 parameter group (parameters 300 through 399) \\
\hline \(04000-04990\) & 400 parameter group (parameters 400 through 499) \\
\hline\(\ldots\) & \(\ldots\) \\
\hline \(49000-49990\) & 4900 parameter group (parameters 4900 through 4999) \\
50000 & Input data: Frequency converter control word register (CTW). \\
50010 & Input data: Bus reference register (REF). \\
\(\ldots\) & ... \\
\hline 50200 & Output data: Frequency converter status word register (STW). \\
\hline 50210 & Output data: Frequency converter main actual value register (MAV). \\
\hline
\end{tabular}

\footnotetext{
* Used to specify the index number to be used when accessing an indexed parameter.
}

\subsection*{7.8.9 How to Control the Frequency Converter}

This section describes codes which can be used in the function and data fields of a Modbus RTU message. For a complete description of all the message fields please refer to the section Modbus RTU Message Framing Structure.

\subsection*{7.8.10 Function Codes Supported by Modbus RTU}

Modbus RTU supports use of the following function codes in the function field of a message:
\begin{tabular}{|ll|}
\hline Function & Function Code \\
\hline Read coils & 1 hex \\
Read holding registers & 3 hex \\
Write single coil & 5 hex \\
\hline Write single register & 6 hex \\
Write multiple coils & F hex \\
Write multiple registers & 10 hex \\
Get comm. event counter & B hex \\
Report slave ID & 11 hex \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Function & Function Code & Sub-function code & Sub-function \\
\hline Diagnostics & 8 & 1 & Restart communication \\
& 2 & Return diagnostic register \\
& 10 & Clear counters and diagnostic register \\
& 11 & Return bus message count \\
& 12 & Return bus communication error count \\
& 13 & Return bus exception error count \\
& 14 & Return slave message count \\
\hline
\end{tabular}

\subsection*{7.8.11 Modbus Exception Codes}

For a full explanation of the structure of an exception code response, please refer to the section Modbus RTU Message Framing Structure, Function Field.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Modbus Exception Codes} \\
\hline Code & Name & Meaning \\
\hline 1 & Illegal function & The function code received in the query is not an allowable action for the server (or slave). This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server (or slave) is in the wrong state to process a request of this type, for example because it is not configured and is being asked to return register values. \\
\hline 2 & Illegal data address & The data address received in the query is not an allowable address for the server (or slave). More specifically, the combination of reference number and transfer length is invalid. For a controller with 100 registers, a request with offset 96 and length 4 would succeed, a request with offset 96 and length 5 will generate exception 02. \\
\hline 3 & Illegal data value & A value contained in the query data field is not an allowable value for server (or slave). This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the Modbus protocol is unaware of the significance of any particular value of any particular register. \\
\hline 4 & Slave device failure & An unrecoverable error occurred while the server (or slave) was attempting to perform the requested action. \\
\hline
\end{tabular}

\subsection*{7.9 How to Access Parameters}

\subsection*{7.9.1 Parameter Handling}

The PNU (Parameter Number) is translated from the register address contained in the Modbus read or write message. The parameter number is translated to Modbus as ( \(10 \times\) parameter number) DECIMAL.

\subsection*{7.9.2 Storage of Data}

The Coil 65 decimal determines whether data written to the frequency converter are stored in EEPROM and RAM (coil \(65=1\) ) or only in RAM (coil \(65=\) 0 ).

\subsection*{7.9.3 IND}

The array index is set in Holding Register 9 and used when accessing array parameters.

\subsection*{7.9.4 Text Blocks}

Parameters stored as text strings are accessed in the same way as the other parameters. The maximum text block size is 20 characters. If a read request for a parameter is for more characters than the parameter stores, the response is truncated. If the read request for a parameter is for fewer characters than the parameter stores, the response is space filled.

\subsection*{7.9.5 Conversion Factor}

The different attributes for each parameter can be seen in the section on factory settings. Since a parameter value can only be transferred as a whole number, a conversion factor must be used to transfer decimals. Please refer to the Parameters section.

\subsection*{7.9.6 Parameter Values}

\section*{Standard Data Types}

Standard data types are int16, int32, uint8, uint16 and uint32. They are stored as 4 x registers ( \(40001-4\) FFFF). The parameters are read using function 03HEX "Read Holding Registers." Parameters are written using the function 6HEX "Preset Single Register" for 1 register ( 16 bits), and the function 10HEX "Preset Multiple Registers" for 2 registers ( 32 bits). Readable sizes range from 1 register ( 16 bits) up to 10 registers ( 20 characters).

\section*{Non standard Data Types}

Non standard data types are text strings and are stored as \(4 x\) registers ( 40001 - 4FFFF). The parameters are read using function 03HEX "Read Holding Registers" and written using function 10HEX "Preset Multiple Registers." Readable sizes range from 1 register ( 2 characters) up to 10 registers ( 20 characters).

\subsection*{7.10 Examples}

The following examples illustrate various Modbus RTU commands. If an error occurs, please refer to the Exception Codes section.

\subsection*{7.10.1 Read Coil Status (01 HEX)}

\section*{Description}

This function reads the ON/OFF status of discrete outputs (coils) in the frequency converter. Broadcast is never supported for reads.

\section*{Query}

The query message specifies the starting coil and quantity of coils to be read. Coil addresses start at zero, i.e. coil 33 is addressed as 32.

Example of a request to read coils 33-48 (Status Word) from slave device 01:
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
\hline Slave Address & 01 (frequency converter address) \\
Function & 01 (read coils) \\
\hline Starting Address HI & 00 \\
Starting Address LO & 20 (32 decimals) Coil 33 \\
\hline No. of Points HI & 00 \\
\hline No. of Points LO & 10 (16 decimals) \\
\hline Error Check (CRC) & - \\
\hline
\end{tabular}

\section*{Response}

The coil status in the response message is packed as one coil per bit of the data field. Status is indicated as: \(1=0 N ; 0=O F F\). The LSB of the first data byte contains the coil addressed in the query. The other coils follow toward the high order end of this byte, and from 'low order to high order' in subsequent bytes.
If the returned coil quantity is not a multiple of eight, the remaining bits in the final data byte will be padded with zeros (toward the high order end of the byte). The Byte Count field specifies the number of complete bytes of data.
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
\hline Slave Address & 01 (frequency converter address) \\
Function & 01 (read coils) \\
Byte Count & 02 (2 bytes of data) \\
Data (Coils 40-33) & 07 \\
\hline Data (Coils 48-41) & 06 (STW=0607hex) \\
Error Check (CRC) & - \\
\hline
\end{tabular}


\section*{NB!}

Coils and registers are addressed explicit with an off-set of -1 in Modbus.
I.e. Coil 33 is addressed as Coil 32.

\subsection*{7.10.2 Force/Write Single Coil (05 HEX)}

\section*{Description}

This function forces a writes a coil to either ON or OFF. When broadcast the function forces the same coil references in all attached slaves.

\section*{Query}

The query message specifies the coil 65 (parameter write control) to be forced. Coil addresses start at zero, i.e. coil 65 is addressed as 64 . Force Data \(=0000 \mathrm{HEX}\) (OFF) or FF OOHEX (ON).
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
\hline Slave Address & 01 (frequency converter address) \\
Function & 05 (write single coil) \\
Coil Address HI & 00 \\
\hline Coil Address LO & 40 (64 decimal) Coil 65 \\
\hline Force Data HI & FF \\
Force Data LO & 00 (FF \(00=\mathrm{ON})\) \\
\hline Error Check (CRC) & - \\
\hline
\end{tabular}

\section*{Response}

The normal response is an echo of the query, returned after the coil state has been forced.
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
Slave Address & 01 \\
Function & 05 \\
Force Data HI & FF \\
Force Data LO & 00 \\
Quantity of Coils HI & 00 \\
Quantity of Coils LO & 01 \\
Error Check (CRC) & - \\
\hline
\end{tabular}

\subsection*{7.10.3 Force/Write Multiple Coils (OF HEX)}

This function forces each coil in a sequence of coils to either ON or OFF. When broadcast the function forces the same coil references in all attached slaves. .

The query message specifies the coils 17 to 32 (speed set-point) to be forced.

NB!
Coil addresses start at zero, i.e. coil 17 is addressed as 16.
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
\hline Slave Address & 01 (frequency converter address) \\
Function & 0 (write multiple coils) \\
\hline Coil Address HI & 00 \\
Coil Address LO & 10 (coil address 17) \\
Quantity of Coils HI & 00 \\
Quantity of Coils LO & 10 (16 coils) \\
Byte Count & 02 \\
\hline \begin{tabular}{l} 
Force Data HI \\
(Coils 8-1)
\end{tabular} & 20 \\
\hline \begin{tabular}{l} 
Force Data LO \\
(Coils 10-9)
\end{tabular} & 00 (ref. \(=2000\) hex) \\
Error Check (CRC) & - \\
\hline
\end{tabular}

\section*{Response}

The normal response returns the slave address, function code, starting address, and quantity of coiles forced.
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
Slave Address & 01 (frequency converter address) \\
Function & 0 (write multiple coils) \\
Coil Address HI & 00 \\
Coil Address LO & 10 (coil address 17) \\
Quantity of Coils HI & 00 \\
Quantity of Coils LO & 10 (16 coils) \\
\hline Error Check (CRC) & - \\
\hline
\end{tabular}

\subsection*{7.10.4 Read Holding Registers (03 HEX)}

\section*{Description}

This function reads the contents of holding registers in the slave.

\section*{Query}

The query message specifies the starting register and quantity of registers to be read. Register addresses start at zero, i.e. registers 1-4 are addressed as 0-3.

Example: Read par. 3-03, Maximum Reference, register 03030.
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
Slave Address & 01 \\
Function & 03 (read holding registers) \\
Starting Address HI & \(0 B\) (Register address 3029) \\
Starting Address LO & 05 (Register address 3029) \\
\hline No. of Points HI & 00 \\
No. of Points LO & \(02-\) (Par. 3-03 is 32 bits long, i.e. 2 registers) \\
Error Check (CRC) & - \\
\hline
\end{tabular}

\section*{Response}

The register data in the response message are packed as two bytes per register, with the binary contents right justified within each byte. For each register, the first byte contains the high order bits and the second contains the low order bits.

Example: Hex 0016E360 \(=1.500 .000=1500\) RPM.
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
Slave Address & 01 \\
Function & 03 \\
Byte Count & 04 \\
Data HI & 00 \\
(Register 3030) & 16 \\
\begin{tabular}{ll|} 
Data LO \\
(Register 3030) & E3 \\
\begin{tabular}{l} 
Data HI \\
(Register 3031)
\end{tabular} & 60 \\
\begin{tabular}{l} 
Data LO \\
(Register 3031)
\end{tabular} & - \\
\begin{tabular}{l} 
Error Check \\
(CRC)
\end{tabular} & \\
\hline
\end{tabular} \(\mathbf{l}\) \\
\hline
\end{tabular}

\subsection*{7.10.5 Preset Single Register (06 HEX)}

\section*{Description}

This function presets a value into a single holding register.

\section*{Query}

The query message specifies the register reference to be preset. Register addresses start at zero, i.e. register 1 is addressed as 0 .

Example: Write to par. 1-00, register 1000.
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
Slave Address & 01 \\
Function & 06 \\
\hline Register Address HI & 03 (Register address 999) \\
Register Address LO & E7 (Register address 999) \\
\hline Preset Data HI & 00 \\
Preset Data LO & 01 \\
\hline Error Check (CRC) & - \\
\hline
\end{tabular}

\section*{Response}

Response The normal response is an echo of the query, returned after the register contents have been passed.
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
Slave Address & 01 \\
Function & 06 \\
Register Address HI & 03 \\
Register Address LO & E7 \\
Preset Data HI & 00 \\
Preset Data LO & 01 \\
\hline Error Check (CRC) & - \\
\hline
\end{tabular}

\subsection*{7.10.6 Preset Multiple Registers (10 HEX)}

\section*{Description}

This function presets values into a sequence of holding registers.

\section*{Query}

The query message specifies the register references to be preset. Register addresses start at zero, i.e. register 1 is addressed as 0 . Example of a request to preset two registers (set parameter 1-05 = \(738(7.38 \mathrm{~A})\) ):
\begin{tabular}{|c|c|}
\hline Field Name & Example (HEX) \\
\hline Slave Address & 01 \\
\hline Function & 10 \\
\hline Starting Address HI & 04 \\
\hline Starting Address LO & 19 \\
\hline No. of Registers HI & 00 \\
\hline No. of registers LO & 02 \\
\hline Byte Count & 04 \\
\hline Write Data HI (Register 4: 1049) & 00 \\
\hline Write Data LO (Register 4: 1049) & 00 \\
\hline \begin{tabular}{l}
Write Data HI \\
(Register 4: 1050)
\end{tabular} & 02 \\
\hline \begin{tabular}{l}
Write Data LO \\
(Register 4: 1050)
\end{tabular} & E2 \\
\hline Error Check (CRC) & - \\
\hline
\end{tabular}

\section*{Response}

The normal response returns the slave address, function code, starting address, and quantity of registers preset.
\begin{tabular}{|ll|}
\hline Field Name & Example (HEX) \\
Slave Address & 01 \\
Function & 10 \\
Starting Address HI & 04 \\
Starting Address LO & 19 \\
No. of Registers HI & 00 \\
No. of registers LO & 02 \\
\hline Error Check (CRC) & - \\
\hline
\end{tabular}

\subsection*{7.11 Danfoss FC Control Profile}

\subsection*{7.11.1 Control Word According to FC Profile(par. 8-10 Control Profile = FC profile)}
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{Master-slave 130BA274} \\
\hline & CTW & Speed ref. \\
\hline & 15141312 & 76543210 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Bit & Bit value \(=0\) & Bit value \(=1\) \\
\hline 00 & Reference value & external selection Isb \\
01 & Reference value & external selection msb \\
02 & DC brake & Ramp \\
03 & Coasting & No coasting \\
04 & Quick stop & Ramp \\
05 & Hold output frequency & use ramp \\
06 & Ramp stop & Start \\
07 & No function & Reset \\
08 & No function & Jog \\
09 & Ramp 1 & Ramp 2 \\
10 & Data invalid & Data valid \\
11 & No function & Relay 01 active \\
12 & No function & Relay 02 active \\
13 & Parameter set-up & selection Isb \\
14 & Parameter set-up & selection msb \\
15 & No function & Reverse \\
\hline
\end{tabular}

\section*{Explanation of the Control Bits}

\section*{Bits 00/01}

Bits 00 and 01 are used to choose between the four reference values, which are pre-programmed in par. 3-10 Preset Reference according to the following table:
\begin{tabular}{|llll|}
\hline \multirow{2}{*}{ Programmed ref. value } & Par. & Bit 01 & Bit 00 \\
\hline 1 & Par. 3-10 Preset Reference [0] & 0 & 0 \\
2 & Par. 3-10 Preset Reference [1] & 0 & 1 \\
3 & Par. 3-10 Preset Reference [2] & 1 & 0 \\
4 & Par. 3-10 Preset Reference [3] & 1 & 1 \\
\hline
\end{tabular}


NB!
Make a selection in par. 8-56 Preset Reference Select to define how Bit 00/01 gates with the corresponding function on the digital inputs.

Bit 02, DC brake:

Bit \(02=\) ' 0 ' leads to DC braking and stop. Set braking current and duration in par. 2-01 DC Brake Current and par. 2-02 DC Braking Time. Bit \(02=\) ' 1 ' leads to ramping.

Bit 03, Coasting:
Bit 03 = ' 0 ': The frequency converter immediately "lets go" of the motor, (the output transistors are "shut off") and it coasts to a standstill. Bit \(03=\) ' 1 ': The frequency converter starts the motor if the other starting conditions are met.

Make a selection in par. 8-50 Coasting Select to define how Bit 03 gates with the corresponding function on a digital input.

Bit 04, Quick stop:
Bit \(04=\) ' 0 ': Makes the motor speed ramp down to stop (set in par. 3-81 Quick Stop Ramp Time.

Bit 05, Hold output frequency
Bit \(05=\) ' 0 ': The present output frequency (in Hz ) freezes. Change the frozen output frequency only by means of the digital inputs (par. 5-10 Terminal 18 Digital Input to par. 5-15 Terminal 33 Digital Input) programmed to Speed up and Slow down.

NB!
If Freeze output is active, the frequency converter can only be stopped by the following:
- Bit 03 Coasting stop
- Bit 02 DC braking
- Digital input (par. 5-10 Terminal 18 Digital Input to par. 5-15 Terminal 33 Digital Input) programmed to DC braking, Coasting stop, or Reset and coasting stop.

Bit 06, Ramp stop/start:
Bit \(06=\) ' 0 ': Causes a stop and makes the motor speed ramp down to stop via the selected ramp down parameter. Bit \(06=1\) ': Permits the frequency converter to start the motor, if the other starting conditions are met.

Make a selection in par. 8-53 Start Select to define how Bit 06 Ramp stop/start gates with the corresponding function on a digital input.

Bit 07 , Reset: Bit \(07={ }^{\prime} 0\) ': No reset. Bit \(07=\) ' 1 ': Resets a trip. Reset is activated on the signal's leading edge, i.e. when changing from logic ' 0 ' to logic '1'.

Bit 08, Jog:
Bit 08 = ' 1 ': The output frequency is determined by par. 3-19 Jog Speed [RPM].

Bit 09, Selection of ramp \(1 / 2\) :
Bit 09 = "0": Ramp 1 is active (par. 3-41 Ramp 1 Ramp Up Time to par. 3-42 Ramp 1 Ramp Down Time). Bit 09 = "1": Ramp 2 (par. 3-51 Ramp 2 Ramp Up Time to par. 3-52 Ramp 2 Ramp Down Time) is active.

Bit 10, Data not valid/Data valid:
Tell the frequency converter whether to use or ignore the control word. Bit \(10=\) ' 0 ': The control word is ignored. Bit \(10=\) ' 1 ': The control word is used. This function is relevant because the telegram always contains the control word, regardless of the telegram type. Thus, you can turn off the control word if you do not want to use it when updating or reading parameters.

Bit 11, Relay 01:
Bit \(11=\) " 0 ": Relay not activated. Bit \(11=\) "1": Relay 01 activated provided that Control word bit 11 is chosen in par. 5-40 Function Relay.

Bit 12, Relay 04:
Bit \(12=\) " 0 ": Relay 04 is not activated. Bit \(12=" 1\) ": Relay 04 is activated provided that Control word bit 12 is chosen in par. 5-40 Function Relay.

Bit \(13 / 14\), Selection of set-up:
Use bits 13 and 14 to choose from the four menu set-ups according to the shown table: .
\begin{tabular}{|ccc|}
\hline Set-up & Bit 14 & Bit 13 \\
\hline 1 & 0 & 0 \\
2 & 0 & 1 \\
3 & 1 & 0 \\
4 & 1 & 1 \\
\hline
\end{tabular}

The function is only possible when Multi Set-Ups is selected in par. 0-10 Active Set-up.

Make a selection in par. 8-55 Set-up Select to define how Bit 13/14 gates with the corresponding function on the digital inputs.

\section*{Bit 15 Reverse:}

Bit \(15=\) ' 0 ': No reversing. Bit \(15=\) ' 1 ': Reversing. In the default setting, reversing is set to digital in par. 8-54 Reversing Select. Bit 15 causes reversing only when Ser. communication, Logic or or Logic and is selected.

\subsection*{7.11.2 Status Word According to FC Profile (STW) (par. 8-10 Control Profile = FC profile)}

\begin{tabular}{|lll|}
\hline Bit & Bit \(=0\) & Bit \(=1\) \\
\hline 00 & Control not ready & Control ready \\
01 & Drive not ready & Drive ready \\
02 & Coasting & Enable \\
03 & No error & Trip \\
04 & No error & Error (no trip) \\
05 & Reserved & - \\
06 & No error & Triplock \\
07 & No warning & Warning \\
08 & Speed ¥ reference & Speed = reference \\
09 & Local operation & Bus control \\
10 & Out of frequency limit & Frequency limit OK \\
11 & No operation & In operation \\
12 & Drive OK & Stopped, auto start \\
13 & Voltage OK & Voltage exceeded \\
14 & Torque OK & Torque exceeded \\
15 & Timer OK & Timer exceeded \\
\hline
\end{tabular}

Explanation of the Status Bits
Bit 00, Control not ready/ready:
Bit \(00=\) ' 0 ': The frequency converter trips. Bit \(00=\) ' 1 ': The frequency converter controls are ready but the power component does not necessarily receive any power supply (in case of external 24 V supply to controls).

Bit 01, Drive ready:
Bit 01 = ' 1 ': The frequency converter is ready for operation but the coasting command is active via the digital inputs or via serial communication.

\section*{Bit 02, Coasting stop:}

Bit \(02=\) ' 0 ': The frequency converter releases the motor. Bit \(02=1\) ': The frequency converter starts the motor with a start command.

Bit 03, No error/trip:
Bit 03 = ' 0 ' : The frequency converter is not in fault mode. Bit 03 = ' 1 ': The frequency converter trips. To re-establish operation, enter [Reset].

Bit 04, No error/error (no trip):
Bit 04 = ' 0 ': The frequency converter is not in fault mode. Bit \(04=\) " 1 ": The frequency converter shows an error but does not trip.

Bit 05, Not used:
Bit 05 is not used in the status word.

Bit 06, No error / triplock:
Bit \(06=\) ' 0 ': The frequency converter is not in fault mode. Bit \(06=\) " 1 ": The frequency converter is tripped and locked.

Bit 07, No warning/warning:
Bit \(07=\) ' 0 ': There are no warnings. Bit \(07=\) ' 1 ': A warning has occurred.

Bit 08, Speed \(\neq\) reference/speed \(=\) reference:
Bit \(08=\) ' 0 ': The motor is running but the present speed is different from the preset speed reference. It might e.g. be the case when the speed ramps up/down during start/stop. Bit \(08=\) '1': The motor speed matches the preset speed reference.

Bit 09, Local operation/bus control:
Bit \(09=\) ' 0 ': [STOP/RESET] is activate on the control unit or Local control in par. 3-13 Reference Site is selected. You cannot control the frequency converter via serial communication. Bit \(09=\) ' 1 ' It is possible to control the frequency converter via the fieldbus / serial communication.

Bit 10, Out of frequency limit:
Bit \(10=\) '0': The output frequency has reached the value in par. 4-11 Motor Speed Low Limit [RPM] or par. 4-13 Motor Speed High Limit [RPM]. Bit 10 = "1": The output frequency is within the defined limits.

Bit 11, No operation/in operation:
Bit \(11=\) ' 0 ': The motor is not running. Bit \(11=\) ' 1 ': The frequency converter has a start signal or the output frequency is greater than 0 Hz .

Bit 12, Drive OK/stopped, autostart:
Bit \(12=\) ' 0 ': There is no temporary over temperature on the inverter. Bit \(12=\) ' 1 ': The inverter stops because of over temperature but the unit does not trip and will resume operation once the over temperature stops.

Bit 13, Voltage OK/limit exceeded:
Bit 13 = ' 0 ': There are no voltage warnings. Bit 13 = ' 1 ': The DC voltage in the frequency converter's intermediate circuit is too low or too high.

Bit 14, Torque OK/limit exceeded:
Bit \(14=\) ' 0 ': The motor current is lower than the torque limit selected in par. 4-18 Current Limit. Bit \(14=\) ' 1 ': The torque limit in par. 4-18 Current Limit is exceeded.

Bit 15, Timer OK/limit exceeded:
Bit \(15=\) ' 0 ': The timers for motor thermal protection and thermal protection are not exceeded \(100 \%\). Bit \(15=\) ' 1 ': One of the timers exceeds \(100 \%\).

All bits in the STW are set to '0' if the connection between the Interbus option and the frequency converter is lost, or an internal communication problem has occurred.

\subsection*{7.11.3 Bus Speed Reference Value}

Speed reference value is transmitted to the frequency converter in a relative value in \%. The value is transmitted in the form of a 16 -bit word; in integers ( \(0-32767\) ) the value 16384 ( 4000 Hex ) corresponds to \(100 \%\). Negative figures are formatted by means of 2's complement. The Actual Output frequency (MAV) is scaled in the same way as the bus reference.


The reference and MAV are scaled as follows:


\section*{8 General Specifications and Troubleshooting}

\subsection*{8.1 Mains Supply Tables}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Mains supply 200-240 VAC - Normal overload 110\% for 1 minute} \\
\hline Frequency converter & P1K1 & P1K5 & P2K2 & P3K0 & P3K7 \\
\hline Typical Shaft Output [kW] & 1.1 & 1.5 & 2.2 & 3 & 3.7 \\
\hline \begin{tabular}{l}
IP 20 / Chassis \\
(A2+A3 may be converted to IP21 using a conversion kit. (Please see also items Mechanical mounting in Operating Instructions and IP 21/ Type 1 Enclosure kit in the Design Guide.))
\end{tabular} & A2 & A2 & A2 & A3 & A3 \\
\hline IP 55 / NEMA 12 & A5 & A5 & A5 & A5 & A5 \\
\hline IP 66 / NEMA 12 & A5 & A5 & A5 & A5 & A5 \\
\hline Typical Shaft Output [HP] at 208 V & 1.5 & 2.0 & 2.9 & 4.0 & 4.9 \\
\hline \multicolumn{6}{|l|}{Output current} \\
\hline Continuous
\[
(3 \times 200-240 \mathrm{~V})[\mathrm{A}]
\] & 6.6 & 7.5 & 10.6 & 12.5 & 16.7 \\
\hline  & 7.3 & 8.3 & 11.7 & 13.8 & 18.4 \\
\hline \begin{tabular}{ll} 
& Continuous \\
\(\mathrm{kVA}(208 \mathrm{~V} \mathrm{AC})[\mathrm{kVA}]\)
\end{tabular} & 2.38 & 2.70 & 3.82 & 4.50 & 6.00 \\
\hline Max. cable size: & & & & & \\
\hline \begin{tabular}{l}
(mains, motor, brake) \\
[ \(\mathrm{mm}^{2} /\) AWG] \({ }^{2)}\)
\end{tabular} & & & 4/10 & & \\
\hline \multicolumn{6}{|l|}{Max. input current} \\
\hline \[
\begin{aligned}
& \text { Continuous } \\
& (3 \times 200-240 \mathrm{~V})[\mathrm{A}]
\end{aligned}
\] & 5.9 & 6.8 & 9.5 & 11.3 & 15.0 \\
\hline Intermittent
\[
(3 \times 200-240 \mathrm{~V})[\mathrm{A}]
\] & 6.5 & 7.5 & 10.5 & 12.4 & 16.5 \\
\hline \(\square\) Max. pre-fuses \({ }^{1)}\) [A] & 20 & 20 & 20 & 32 & 32 \\
\hline Environment & & & & & \\
\hline Estimated power loss at rated max. load [W] \({ }^{4)}\) & 63 & 82 & 116 & 155 & 185 \\
\hline Weight enclosure IP20 [kg] & 4.9 & 4.9 & 4.9 & 6.6 & 6.6 \\
\hline Weight enclosure IP21 [kg] & 5.5 & 5.5 & 5.5 & 7.5 & 7.5 \\
\hline Weight enclosure IP55 [kg] & 13.5 & 13.5 & 13.5 & 13.5 & 13.5 \\
\hline Weight enclosure IP 66 [kg] & 13.5 & 13.5 & 13.5 & 13.5 & 13.5 \\
\hline Efficiency \({ }^{3)}\) & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline
\end{tabular}

Table 8.1: Mains Supply 200-240 VAC

ARMSTRONG
Mains supply \(\mathbf{3 \times 2 0 0 - 2 4 0}\) VACNormal overload 110\% for \(\mathbf{1}\) minute
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
IP 20 / Chassis \\
(B3+4 and C3+4 may be converted to IR2using a conversion kit. (Please see also items Mechanical mounting in Operating Instructions and IP1/Type 1 Enclosure kit in the Design Guide.))
\end{tabular} & B3 & B3 & B3 & B4 & B4 & C3 & C3 & C4 & C4 \\
\hline IP 21 / NEMA 1 & B1 & B1 & B1 & B2 & C1 & C1 & C1 & C2 & C2 \\
\hline IP \(55 / \mathrm{NEMA} 12\) & B1 & B1 & B1 & B2 & C1 & C1 & C1 & C2 & C2 \\
\hline IP 66 / NEMA 12 & B1 & B1 & B1 & B2 & C1 & C1 & C1 & C2 & C2 \\
\hline Frequency converter & P5K5 & P7K5 & P11K & P15K & P18K & P22K & P30K & P37K & P45K \\
\hline Typical Shaft Output [kW] & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 \\
\hline Typicshaft Output [HP] at 208 V & 7.5 & 10 & 15 & 20 & 25 & 30 & 40 & 50 & 60 \\
\hline \multicolumn{10}{|l|}{Output current} \\
\hline \[
\begin{aligned}
& \text { Continuous } \\
& (3 \times 20840 \mathrm{~V})[\mathrm{A}]
\end{aligned}
\] & 24.2 & 30.8 & 46.2 & 59.4 & 74.8 & 88.0 & 115 & 143 & 170 \\
\hline  & 26.6 & 33.9 & 50.8 & 65.3 & 82.3 & 96.8 & 127 & 157 & 187 \\
\hline \(\xrightarrow{\rightarrow} \xrightarrow{\text { Continuous }} \mathrm{kVA}(208 \mathrm{NC})[\mathrm{kVA}]\) & 8.7 & 11.1 & 16.6 & 21.4 & 26.9 & 31.7 & 41.4 & 51.5 & 61.2 \\
\hline Max. cambize: & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { (mains, noor, brake) } \\
& {\left[\mathrm{mm}^{2} /\right. \text { AGO 2) }}
\end{aligned}
\] & & 10/7 & & 35/2 & & \[
\begin{gathered}
50 / 1 / 0 \\
(B 4=35 / 2)
\end{gathered}
\] & & 95/4/0 & \[
\begin{gathered}
\text { 120/250 } \\
\text { MCM }
\end{gathered}
\] \\
\hline With mains disconnect switch included: & & 16/6 & & 35/2 & & 35/2 & & 70/3/0 & \begin{tabular}{l}
185/ \\
kcmil350
\end{tabular} \\
\hline \multicolumn{10}{|l|}{Max. input current} \\
\hline \[
\begin{aligned}
& \text { ContinuIS } \\
& (3 \times 2004 \mathrm{D})[\mathrm{A}]
\end{aligned}
\] & 22.0 & 28.0 & 42.0 & 54.0 & 68.0 & 80.0 & 104.0 & 130.0 & 154.0 \\
\hline Internbent
\[
(3 \times 2004 D \mathrm{~V})[\mathrm{A}]
\] & 24.2 & 30.8 & 46.2 & 59.4 & 74.8 & 88.0 & 114.0 & 143.0 & 169.0 \\
\hline \(\square\) Max. pre-fuses \({ }^{1}\) [A] & 63 & 63 & 63 & 80 & 125 & 125 & 160 & 200 & 250 \\
\hline Envinonent: & & & & & & & & & \\
\hline Estimatedower loss at rated fix. load [W] \({ }^{4}\) & 269 & 310 & 447 & 602 & 737 & 845 & 1140 & 1353 & 1636 \\
\hline Weight elosure IP20 [kg] & 12 & 12 & 12 & 23.5 & 23.5 & 35 & 35 & 50 & 50 \\
\hline Weight elosure IP21 [kg] & 23 & 23 & 23 & 27 & 45 & 45 & 45 & 65 & 65 \\
\hline Weight elosure IP55 [kg] & 23 & 23 & 23 & 27 & 45 & 45 & 45 & 65 & 65 \\
\hline Weight elosure IP 66 [ kg ] & 23 & 23 & 23 & 27 & 45 & 45 & 45 & 65 & 65 \\
\hline Efficienc') & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.97 & 0.97 & 0.97 & 0.97 \\
\hline
\end{tabular}
Table 8.2: Mains Supply \(3 \times 200-240\) VA

ARMSTRONG



\subsection*{8.1.1 Mains Supply High Power}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Mains Supply 3 x 380-480 VAC} \\
\hline & & P110 & P132 & P160 & P200 & P250 \\
\hline & Typical Shaft output at 400 V [kW] & 110 & 132 & 160 & 200 & 250 \\
\hline & Typical Shaft output at 460 V [HP] & 150 & 200 & 250 & 300 & 350 \\
\hline & Enclosure IP21 & D1 & D1 & D2 & D2 & D2 \\
\hline & Enclosure IP54 & D1 & D1 & D2 & D2 & D2 \\
\hline & Enclosure IP00 & D3 & D3 & D4 & D4 & D4 \\
\hline \multicolumn{7}{|c|}{Output current} \\
\hline \multirow{6}{*}{} & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 400 \mathrm{~V} \text { ) }[\mathrm{A}]
\end{aligned}
\] & 212 & 260 & 315 & 395 & 480 \\
\hline & Intermittent ( 60 sec overload) (at 400 V ) [A] & 233 & 286 & 347 & 435 & 528 \\
\hline & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 460 / 480 \mathrm{~V} \text { ) [A] }
\end{aligned}
\] & 190 & 240 & 302 & 361 & 443 \\
\hline & \begin{tabular}{l}
Intermittent ( 60 sec overload) \\
(at 460/480 V) [A]
\end{tabular} & 209 & 264 & 332 & 397 & 487 \\
\hline & Continuous KVA (at 400 V ) [KVA] & 147 & 180 & 218 & 274 & 333 \\
\hline & \[
\begin{aligned}
& \text { Continuous KVA } \\
& \text { (at } 460 \mathrm{~V}) \text { [KVA] }
\end{aligned}
\] & 151 & 191 & 241 & 288 & 353 \\
\hline \multicolumn{7}{|l|}{Max. input current} \\
\hline \multirow{12}{*}{} & \[
\begin{aligned}
& \text { Continuous } \\
& (\text { at } 400 \mathrm{~V})[\mathrm{A}]
\end{aligned}
\] & 204 & 251 & 304 & 381 & 463 \\
\hline & Continuous (at 460/480 V) [A] & 183 & 231 & 291 & 348 & 427 \\
\hline & Max. cable size, mains motor, brake and load share \(\left[\mathrm{mm}^{2}\left(\mathrm{AWG}^{2}\right)\right.\) ] & \[
\begin{gathered}
2 \times 70 \\
(2 \times 2 / 0)
\end{gathered}
\] & \[
\begin{gathered}
2 \times 70 \\
(2 \times 2 / 0)
\end{gathered}
\] & \[
\begin{gathered}
2 \times 150 \\
(2 \times 300 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 150 \\
(2 \times 300 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 150 \\
(2 \times 300 \mathrm{mcm})
\end{gathered}
\] \\
\hline & Max. external prefuses [A] \({ }^{1}\) & 300 & 350 & 400 & 500 & 630 \\
\hline & Estimated power loss at rated max. load [W]
\[
\text { 4) , } 400 \mathrm{~V}
\] & 3234 & 3782 & 4213 & 5119 & 5893 \\
\hline & Estimated power loss at rated max. load [W]
\[
\text { 4) , } 460 \mathrm{~V}
\] & 2947 & 3665 & 4063 & 4652 & 5634 \\
\hline & Weight, enclosure IP21, IP 54 [kg] & 96 & 104 & 125 & 136 & 151 \\
\hline & Weight, enclosure IPOO [kg] & 82 & 91 & 112 & 123 & 138 \\
\hline & Efficiency \({ }^{4}\) ) & & & 0.98 & & \\
\hline & Output frequency & & & 0-800 Hz & & \\
\hline & Heatsink overtemp. trip & \(85^{\circ} \mathrm{C}\) & \(90^{\circ} \mathrm{C}\) & \(105^{\circ} \mathrm{C}\) & \(105^{\circ} \mathrm{C}\) & \(115{ }^{\circ} \mathrm{C}\) \\
\hline & Power card ambient trip & & & \(60^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

ARMSTRONG
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Mains Supply \(3 \times 380\) - \(\mathbf{4 8 0}\) VAC} \\
\hline & & P315 & P355 & P400 & P450 \\
\hline & Typical Shaft output at 400 V [kW] & 315 & 355 & 400 & 450 \\
\hline & Typical Shaft output at 460
\[
\mathrm{V}[\mathrm{HP}]
\] & 450 & 500 & 600 & 600 \\
\hline & Enclosure IP21 & E1 & E1 & E1 & E1 \\
\hline & EnclosureIP54 & E1 & E1 & E1 & E1 \\
\hline & Enclosure IP00 & E2 & E2 & E2 & E2 \\
\hline \multicolumn{6}{|c|}{Output current} \\
\hline \multirow{5}{*}{} & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 400 \mathrm{~V} \text { ) }[\mathrm{A}]
\end{aligned}
\] & 600 & 658 & 745 & 800 \\
\hline & \begin{tabular}{l}
Intermittent (60 sec overload) \\
(at 400 V ) [A]
\end{tabular} & 660 & 724 & 820 & 880 \\
\hline & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 460 / 480 \mathrm{~V} \text { ) [A] }
\end{aligned}
\] & 540 & 590 & 678 & 730 \\
\hline & \begin{tabular}{l}
Intermittent ( 60 sec overload) \\
(at 460/480 V) [A]
\end{tabular} & 594 & 649 & 746 & 803 \\
\hline & Continuous KVA (at 400 V ) [KVA] & 416 & 456 & 516 & 554 \\
\hline & Continuous KVA (at 460 V ) [KVA] & 430 & 470 & 540 & 582 \\
\hline \multicolumn{6}{|l|}{Max. input current} \\
\hline \multirow[t]{13}{*}{} & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 400 \mathrm{~V} \text { ) [A] }
\end{aligned}
\] & 590 & 647 & 733 & 787 \\
\hline & \begin{tabular}{l}
Continuous \\
(at 460/480 V) [A]
\end{tabular} & 531 & 580 & 667 & 718 \\
\hline & Max. cable size, mains, motor and load share [ \(\mathrm{mm}^{2}\left(\mathrm{AWG}^{2}\right)\) ] & \[
\begin{gathered}
4 \times 240 \\
(4 \times 500 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
4 \times 240 \\
(4 \times 500 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
4 \times 240 \\
(4 \times 500 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
4 \times 240 \\
(4 \times 500 \mathrm{mcm})
\end{gathered}
\] \\
\hline & Max. cable size, brake [ \(\mathrm{mm}^{2}\left(\mathrm{AWG}^{2}\right)\) ) & \[
\begin{gathered}
2 \times 185 \\
(2 \times 350 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 185 \\
(2 \times 350 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 185 \\
(2 \times 350 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 185 \\
(2 \times 350 \mathrm{mcm})
\end{gathered}
\] \\
\hline & Max. external pre-fuses [A] \({ }^{1}\) & 700 & 900 & 900 & 900 \\
\hline & Estimated power loss at rated max. load [W] \({ }^{4)}\), 400 V & 6790 & 7701 & 8879 & 9670 \\
\hline & Estimated power loss at rated max. load [W] \({ }^{4)}\), 460 V & 6082 & 6953 & 8089 & 8803 \\
\hline & Weight, enclosure IP21, IP 54 [kg] & 263 & 270 & 272 & 313 \\
\hline & Weight, enclosure IPOO [kg] & 221 & 234 & 236 & 277 \\
\hline & Efficiency \({ }^{4}\) ) & & \multicolumn{2}{|c|}{0.98} & \\
\hline & Output frequency & & \multicolumn{2}{|c|}{\(0-600 \mathrm{~Hz}\)} & \\
\hline & Heatsink overtemp. trip & & \multicolumn{2}{|c|}{\(95^{\circ} \mathrm{C}\)} & \\
\hline & Power card ambient trip & & \multicolumn{2}{|c|}{\(68^{\circ} \mathrm{C}\)} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Mains Supply \(3 \times 525-690\) VAC} \\
\hline & P45K & P55K & P75K & P90K & P110 \\
\hline Typical Shaft output at 550 V [kW] & 37 & 45 & 55 & 75 & 90 \\
\hline Typical Shaft output at 575 V [HP] & 50 & 60 & 75 & 100 & 125 \\
\hline Typical Shaft output at 690 V [kW] & 45 & 55 & 75 & 90 & 110 \\
\hline Enclosure IP21 & D1 & D1 & D1 & D1 & D1 \\
\hline Enclosure IP54 & D1 & D1 & D1 & D1 & D1 \\
\hline Enclosure IPOO & D2 & D2 & D2 & D2 & D2 \\
\hline \multicolumn{6}{|l|}{Output current} \\
\hline \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 3 \times 525-550 \mathrm{~V} \text { ) }[\mathrm{A}]
\end{aligned}
\] & 56 & 76 & 90 & 113 & 137 \\
\hline \begin{tabular}{l}
Intermittent ( 60 sec overload) \\
(at 550 V ) [A]
\end{tabular} & 62 & 84 & 99 & 124 & 151 \\
\hline Continuous
\[
(\text { at } 3 \times 551-690 \mathrm{~V})[\mathrm{A}]
\] & 54 & 73 & 86 & 108 & 131 \\
\hline  & 59 & 80 & 95 & 119 & 144 \\
\hline Continuous KVA
(at 550 V ) [KVA] & 53 & 72 & 86 & 108 & 131 \\
\hline Continuous KVA (at 575 V ) [KVA] & 54 & 73 & 86 & 108 & 130 \\
\hline \[
\begin{aligned}
& \text { Continuous KVA } \\
& \text { (at } 690 \mathrm{~V} \text { ) [KVA] }
\end{aligned}
\] & 65 & 87 & 103 & 129 & 157 \\
\hline \multicolumn{6}{|l|}{Max. input current} \\
\hline Continuous
(at 550 V ) [A] & 60 & 77 & 89 & 110 & 130 \\
\hline T) \begin{tabular}{l} 
Continuous \\
(at 575 V\()\) \\
(A]
\end{tabular} & 58 & 74 & 85 & 106 & 124 \\
\hline Continuous (at 690 V ) [A] & 58 & 77 & 87 & 109 & 128 \\
\hline Max. cable size, mains, motor, load share and brake [mm \({ }^{2}\) (AWG)] & \multicolumn{5}{|c|}{\(2 \times 70\) (2x2/0)} \\
\hline Max. external pre-fuses [A] \({ }^{1}\) & 125 & 160 & 200 & 200 & 250 \\
\hline Estimated power loss at rated max. load [W] 4), 600 V & 1398 & 1645 & 1827 & 2157 & 2533 \\
\hline Estimated power loss at rated max. load [W] 4), 690 V & 1458 & 1717 & 1913 & 2262 & 2662 \\
\hline Weight, enclosure IP21, IP 54 [kg] & \multicolumn{5}{|c|}{96} \\
\hline Weight, enclosure IPOO [kg] & \multicolumn{5}{|c|}{82} \\
\hline Efficiency \({ }^{4}\) ) & 0.97 & 0.97 & 0.98 & 0.98 & 0.98 \\
\hline Output frequency & \multicolumn{5}{|c|}{\(0-600 \mathrm{~Hz}\)} \\
\hline Heatsink overtemp. trip & \multicolumn{5}{|c|}{\(85^{\circ} \mathrm{C}\)} \\
\hline Power card ambient trip & \multicolumn{5}{|c|}{\(60^{\circ} \mathrm{C}\)} \\
\hline
\end{tabular}


ARMSTRONG
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Mains Supply \(3 \times 525-690\) VAC} \\
\hline & & P315 & P400 & P450 \\
\hline & Typical Shaft output at 550 V [kW] & 250 & 315 & 355 \\
\hline & Typical Shaft output at 575 V [HP] & 350 & 400 & 450 \\
\hline & Typical Shaft output at 690 V [kW] & 315 & 400 & 450 \\
\hline & Enclosure IP21 & D2 & D2 & E1 \\
\hline & Enclosure IP54 & D2 & D2 & E1 \\
\hline & Enclosure IP00 & D4 & D4 & E2 \\
\hline \multicolumn{5}{|c|}{Output current} \\
\hline \multirow{7}{*}{} & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 550 \mathrm{~V} \text { ) }[\mathrm{A}]
\end{aligned}
\] & 360 & 418 & 470 \\
\hline & Intermittent ( 60 sec overload) (at 550 V ) [A] & 396 & 460 & 517 \\
\hline & \[
\begin{aligned}
& \text { Continuous } \\
& (\text { at } 575 / 690 \mathrm{~V})[\mathrm{A}]
\end{aligned}
\] & 344 & 400 & 450 \\
\hline & Intermittent (60 sec overload) (at \(575 / 690 \mathrm{~V}\) ) [A] & 378 & 440 & 495 \\
\hline & \[
\begin{aligned}
& \text { Continuous KVA } \\
& (\text { at } 550 \mathrm{~V}) \text { [KVA] }
\end{aligned}
\] & 343 & 398 & 448 \\
\hline & Continuous KVA (at 575 V ) [KVA] & 343 & 398 & 448 \\
\hline & \[
\begin{aligned}
& \text { Continuous KVA } \\
& \text { (at } 690 \mathrm{~V} \text { ) }[\mathrm{KVA}]
\end{aligned}
\] & 411 & 478 & 538 \\
\hline \multicolumn{5}{|l|}{Max. input current} \\
\hline \multirow[t]{14}{*}{} & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 550 \mathrm{~V} \text { ) }[\mathrm{A}]
\end{aligned}
\] & 355 & 408 & 453 \\
\hline & Continuous (at 575 V ) [A] & 339 & 390 & 434 \\
\hline & \[
\begin{aligned}
& \text { Continuous } \\
& (\text { at } 690 \mathrm{~V})[\mathrm{A}]
\end{aligned}
\] & 352 & 400 & 434 \\
\hline & Max. cable size, mains, motor and load share [mm² (AWG)] & \[
\begin{gathered}
2 \times 150 \\
(2 \times 300 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 150 \\
(2 \times 300 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
4 \times 240 \\
(4 \times 500 \mathrm{mcm})
\end{gathered}
\] \\
\hline & Max. cable size, brake [ \(\mathrm{mm}^{2}\) (AWG)] & \[
\begin{gathered}
2 \times 150 \\
(2 \times 300 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 150 \\
(2 \times 300 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 185 \\
(2 \times 350 \mathrm{mcm})
\end{gathered}
\] \\
\hline & Max. external pre-fuses [A] \({ }^{1}\) & 500 & 550 & 700 \\
\hline & \begin{tabular}{l}
Estimated power loss \\
at rated max. load [W] 4) , 600 V
\end{tabular} & 5493 & 5852 & 6132 \\
\hline & Estimated power loss at rated max. load [W] 4) , 690 V & 5821 & 6149 & 6440 \\
\hline & Weight, enclosure IP21, IP 54 [kg] & 151 & 165 & 263 \\
\hline & Weight, enclosure IPOO [kg] & 138 & 151 & 221 \\
\hline & Efficiency \({ }^{4}\) ) & \multicolumn{3}{|c|}{0.98} \\
\hline & Output frequency & \(0-600 \mathrm{~Hz}\) & \(0-500 \mathrm{~Hz}\) & \(0-500 \mathrm{~Hz}\) \\
\hline & Heatsink overtemp. trip & \(110^{\circ} \mathrm{C}\) & \(110^{\circ} \mathrm{C}\) & \(85^{\circ} \mathrm{C}\) \\
\hline & Power card ambient trip & \(60^{\circ} \mathrm{C}\) & \(60^{\circ} \mathrm{C}\) & \(68^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Mains Supply \(3 \times 525-690\) VAC} \\
\hline & & P500 & P560 & P630 \\
\hline & Typical Shaft output at 550 V [kW] & 400 & 450 & 500 \\
\hline & Typical Shaft output at 575 V [HP] & 500 & 600 & 650 \\
\hline & Typical Shaft output at 690 V [kW] & 500 & 560 & 630 \\
\hline & Enclosure IP21 & E1 & E1 & E1 \\
\hline & Enclosure IP54 & E1 & E1 & E1 \\
\hline & Enclosure IP00 & E2 & E2 & E2 \\
\hline \multicolumn{5}{|c|}{Output current} \\
\hline \multirow{7}{*}{} & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 550 \mathrm{~V} \text { ) }[\mathrm{A}]
\end{aligned}
\] & 523 & 596 & 630 \\
\hline & Intermittent ( 60 sec overload) (at 550 V ) [A] & 575 & 656 & 693 \\
\hline & \[
\begin{aligned}
& \text { Continuous } \\
& (\text { at } 575 / 690 \mathrm{~V})[\mathrm{A}]
\end{aligned}
\] & 500 & 570 & 630 \\
\hline & Intermittent ( 60 sec overload) (at \(575 / 690 \mathrm{~V}\) ) [A] & 550 & 627 & 693 \\
\hline & \[
\begin{aligned}
& \text { Continuous KVA } \\
& \text { (at } 550 \mathrm{~V} \text { ) }[\mathrm{KVA}]
\end{aligned}
\] & 498 & 568 & 600 \\
\hline & Continuous KVA (at 575 V ) [KVA] & 498 & 568 & 627 \\
\hline & \[
\begin{aligned}
& \text { Continuous KVA } \\
& \text { (at } 690 \mathrm{~V} \text { ) }[\mathrm{KVA}]
\end{aligned}
\] & 598 & 681 & 753 \\
\hline \multicolumn{5}{|l|}{Max. input current} \\
\hline \multirow[t]{14}{*}{} & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 550 \mathrm{~V} \text { ) [A] }
\end{aligned}
\] & 504 & 574 & 607 \\
\hline & \begin{tabular}{l}
Continuous \\
(at 575 V ) [A]
\end{tabular} & 482 & 549 & 607 \\
\hline & \[
\begin{aligned}
& \text { Continuous } \\
& \text { (at } 690 \mathrm{~V} \text { ) }[\mathrm{A}]
\end{aligned}
\] & 482 & 549 & 607 \\
\hline & Max. cable size, mains, motor and load share [mm \({ }^{2}\) (AWG)] & \(4 \times 240\) ( \(4 \times 500 \mathrm{mcm}\) ) & 4x240 (4x500 mcm) & \(4 \times 240\) ( \(4 \times 500 \mathrm{mcm}\) ) \\
\hline & Max. cable size, brake [ \(\mathrm{mm}^{2}\) (AWG)] & \[
\begin{gathered}
2 \times 185 \\
(2 \times 350 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 185 \\
(2 \times 350 \mathrm{mcm})
\end{gathered}
\] & \[
\begin{gathered}
2 \times 185 \\
(2 \times 350 \mathrm{mcm})
\end{gathered}
\] \\
\hline & Max. external pre-fuses [A] \({ }^{1}\) & 700 & 900 & 900 \\
\hline & Estimated power loss at rated max. load [W] \({ }^{4)}, 600\) V & 6903 & 8343 & 9244 \\
\hline & Estimated power loss at rated max. load [W] \({ }^{4)}, 690\) V & 7249 & 8727 & 9673 \\
\hline & Weight, enclosure IP21, IP 54 [kg] & 263 & 272 & 313 \\
\hline & Weight, enclosure IPOO [kg] & 221 & 236 & 277 \\
\hline & Efficiency \({ }^{4}\) ) & \multicolumn{3}{|c|}{0.98} \\
\hline & Output frequency & \multicolumn{3}{|c|}{O-500 Hz} \\
\hline & Heatsink overtemp. trip & \multicolumn{3}{|c|}{\(85^{\circ} \mathrm{C}\)} \\
\hline & Power card ambient trip & \multicolumn{3}{|c|}{\(68^{\circ} \mathrm{C}\)} \\
\hline
\end{tabular}

1) For type of fuse see section Fuses.
2) American Wire Gauge.
3) Measured using 5 m screened motor cables at rated load and rated frequency.
4) The typical power loss is at nominal load conditions and expected to be within \(+/-15 \%\) (tolerence relates to variety in voltage and cable conditions). Values are based on a typical motor efficiency (eff2/eff3 border line). Motors with lower efficiency will also add to the power loss in the frequency converter and opposite. If the switching frequency is increased comed to the default setting, the power losses may rise sig-
nificantly. LCP and typical control card power consumptions are included. Further options and customer load may add up to 30 W to the losses. (Though typical only 4W extra for a fully loaded control card, or options for slot A or slot B, each).
Although measurements are made with state of the art equipment, some measurement inaccuracy must be allowed for (+/-5\%).

\subsection*{8.2 General Specifications}

\section*{Mains supply (L1, L2, L3):}

Supply voltage
\(200-240 \mathrm{~V} \pm 10 \% 380-480 \mathrm{~V} \pm 10 \% 525-600 \mathrm{~V} \pm 10 \% 525-690 \mathrm{~V} \pm 10 \%\)
Mains voltage low / mains drop-out:
During low mains voltage or a mains drop-out, the FC continues until the intermediate circuit voltage drops below the minimum stop level, which corresponds typically to \(15 \%\) below the FC's lowest rated supply voltage. Power-up and full torque cannot be expected at mains voltage lower than \(10 \%\) below the FC's lowest rated supply voltage.
\begin{tabular}{l} 
Supply frequency \\
Max. imbalance temporary between mains phases \\
True Power Factor () \\
\hline Displacement Power Factor (cos) near unity \\
Switching on input supply L1, L2, L3 (power-ups) \(\leq\) enclosure type A \\
\hline Switching on input supply L1, L2, L3 (power-ups) \(\geq\) enclosure type B, C \\
\hline Switching on input supply L1, L2, L3 (power-ups) \(\geq\) enclosure type D, E, F \\
Environment according to EN60664-1
\end{tabular}

The unit is suitable for use on a circuit capable of delivering not more than 100.000 RMS symmetrical Amperes, 480/600 V maximum.
Motor output (U, V, W):
Output voltage
Output frequency
Switching on output
Ramp times
* Dependent on power size.

\section*{Torque characteristics:}

Starting torque (Constant torque) maximum \(110 \%\) for 1 min .
Starting torque
Overload torque (Constant torque) maximum \(135 \%\) up to 0.5 sec .
*Percentage relates to the frequency converter's nominal torque.
Cable lengths and cross sections:
\begin{tabular}{l|c}
\hline Max. motor cable length, screened/armoured & IVS 102 Drive: 150 m \\
Max. motor cable length, unscreened/unarmoured & IVS 102 Drive: 300 m \\
\hline Max. cross section to motor, mains, load sharing and brake * & \(1.5 \mathrm{~mm}^{2} / 16 \mathrm{AWG}\left(2 \times 0.75 \mathrm{~mm}^{2}\right)\) \\
\hline Maximum cross section to control terminals, rigid wire & \(1 \mathrm{~mm}^{2} / 18 \mathrm{AWG}\) \\
Maximum cross section to control terminals, flexible cable & \(0.5 \mathrm{~mm}^{2} / 20 \mathrm{AWG}\) \\
Maximum cross section to control terminals, cable with enclosed core & \(0.25 \mathrm{~mm}^{2}\) \\
Minimum cross section to control terminals &
\end{tabular}

Digital inputs:
\begin{tabular}{|c|c|}
\hline Programmable digital inputs & 4 (6) \\
\hline Terminal number & 18, 19, \(27^{1)}, 29^{1)}, 32,33\), \\
\hline Logic & PNP or NPN \\
\hline Voltage level & 0-24V DC \\
\hline Voltage level, logic'0' PNP & \(<5 \mathrm{~V}\) DC \\
\hline Voltage level, logic'1' PNP & \(>10 \mathrm{~V}\) DC \\
\hline Voltage level, logic '0' NPN & \(>19 \mathrm{~V}\) DC \\
\hline Voltage level, logic '1' NPN & \(<14 \mathrm{~V}\) DC \\
\hline Maximum voltage on input & 28 V DC \\
\hline Input resistance, \(\mathrm{R}_{\mathrm{i}}\) & approx. \(4 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
1) Terminals 27 and 29 can also be programmed as output.

Analog inputs:
\begin{tabular}{|c|c|}
\hline Number of analog inputs & 2 \\
\hline Terminal number & 53, 54 \\
\hline Modes & Voltage or current \\
\hline Mode select & Switch S201 and switch S202 \\
\hline Voltage mode & Switch S201/switch S202 = OFF (U) \\
\hline Voltage level & : 0 to +10 V (scaleable) \\
\hline Input resistance, \(\mathrm{R}_{\mathrm{i}}\) & approx. \(10 \mathrm{k} \Omega\) \\
\hline Max. voltage & \(\pm 20 \mathrm{~V}\) \\
\hline Current mode & Switch S201/switch S202 = ON (I) \\
\hline Current level & \(0 / 4\) to 20 mA (scaleable) \\
\hline Input resistance, \(\mathrm{R}_{\mathrm{i}}\) & approx. \(200 \Omega\) \\
\hline Max. current & 30 mA \\
\hline Resolution for analog inputs & 10 bit (+ sign) \\
\hline Accuracy of analog inputs & Max. error \(0.5 \%\) of full scale \\
\hline Bandwidth & : 200 Hz \\
\hline
\end{tabular}
(SUBA11/.10
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Pulse inputs:} \\
\hline Programmable pulse inputs & 2 \\
\hline Terminal number pulse & 29,33 \\
\hline Max. frequency at terminal, 29, 33 & 110 kHz (Push-pull driven) \\
\hline Max. frequency at terminal, 29, 33 & 5 kHz (open collector) \\
\hline Min. frequency at terminal 29,33 & 4 Hz \\
\hline Voltage level & see section on Digital input \\
\hline Maximum voltage on input & 28 V DC \\
\hline Input resistance, \(\mathrm{Ri}^{\text {i }}\) & approx. \(4 \mathrm{k} \Omega\) \\
\hline Pulse input accuracy ( \(0.1-1 \mathrm{kHz}\) ) & Max. error: \(0.1 \%\) of full scale \\
\hline \multicolumn{2}{|l|}{Analog output:} \\
\hline Number of programmable analog outputs & 1 \\
\hline Terminal number & 42 \\
\hline Current range at analog output & 0/4-20 mA \\
\hline Max. resistor load to common at analog output & \(500 \Omega\) \\
\hline Accuracy on analog output & Max. error: 0.8 \% of full scale \\
\hline Resolution on analog output & 8 bit \\
\hline
\end{tabular}

The analog output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, RS-485 serial communication:
Terminal number
Terminal number 61
The \(R S-485\) serial communication circuit is functionally seated from other central circuits and galvanically isolated from the supply voltage (PELV).

Digital output:
\begin{tabular}{|c|c|}
\hline Programmable digital/pulse outputs & 2 \\
\hline Terminal number & 27, \(29{ }^{1)}\) \\
\hline Voltage level at digital/frequency output & 0-24V \\
\hline Max. output current (sink or source) & 40 mA \\
\hline Max. load at frequency output & \(1 \mathrm{k} \Omega\) \\
\hline Max. capacitive load at frequency output & 10 nF \\
\hline Minimum output frequency at frequency output & 0 Hz \\
\hline Maximum output frequency at frequency output & 32 kHz \\
\hline Accuracy of frequency output & Max. error: 0.1 \% of full scale \\
\hline Resolution of frequency outputs & 12 bit \\
\hline \multicolumn{2}{|l|}{1) Terminal 27 and 29 can also be programmed as input.} \\
\hline \multicolumn{2}{|l|}{The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.} \\
\hline \multicolumn{2}{|l|}{Control card, 24 V DC output:} \\
\hline Terminal number & 12, 13 \\
\hline Max. load & : 200 mA \\
\hline
\end{tabular}

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.


\section*{1) IEC 60947 t 4 and 5}

The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV).
2) Overvoltage Category II
3) UL applications 300 V AC 2 A

Control card, 10 V DC output:
Terminal number
Output voltage
Max. load

The 10 V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control characteristics:
Resolution of output frequency at \(0-1000 \mathrm{~Hz}\)
System response time (terminals \(18,19,27,29,32,33\) )
Speed control range (open loop)
Speed accuracy (open loop)

All control characteristics are based on a 4-pole asynchronous motor
Surroundings:
Enclosure type A
IP 20/Chassis, IP 21kit/Type 1, IP55/Type12, IP 66/Type12
Enclosure type B1/B2 IP 21/Type 1, IP55/Type12, IP 66/12
Enclosure type B3/B4
IP20/Chassis

Connection to PC is carried out via a standard host/device USB cable.
The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
The USB connection is not galvanically isolated from protection earth. Use only isolated laptop/PC as connection to the USB connector
on frequency converter or an isolated USB cable/converter.

Protection and Features:
- Electronic thermal motor protection against overload.
- Temperature monitoring of the heatsink ensures that the frequency converter trips if the temperature reaches \(95^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\). An overload temperature cannot be reset until the temperature of the heatsink is below \(70^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\) (Guideline - these temperatures may vary for different power sizes, enclosures etc.). The frequency converter has an auto derating function to avoid it's heatsink reaching 95 deg C .
- The frequency converter is protected against short-circuits on motor terminals \(\mathrm{U}, \mathrm{V}, \mathrm{W}\).
- If a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the frequency converter trips if the intermediate circuit voltage is too low or too high.
- The frequency converter is protected against earth faults on motor terminals \(\mathrm{U}, \mathrm{V}, \mathrm{W}\).

\subsection*{8.3 Efficiency}

\section*{Efficiency of the frequency converter ( \(\eta_{\mathrm{vLT}}\) )}

The load on the frequency converter has little effect on its efficiency. In general, the efficiency is the same at the rated motor frequency \(f_{M, N}\), even if the motor supplies \(100 \%\) of the rated shaft torque or only \(75 \%\), i.e. in case of part loads.

This also means that the efficiency of the frequency converter does not change even if other U/f characteristics are chosen. However, the U/f characteristics influence the efficiency of the motor.

The efficiency declines a little when the switching frequency is set to a value of above 5 kHz . The efficiency will also be slightly reduced if the mains voltage is 480 V , or if the motor cable is longer than 30 m .

\section*{Frequency converter efficiency calculation}

Calculate the efficiency of the frequency converter at different loads based on the graph below. The factor in this graph must be multiplied with the specific efficiency factor listed in the specification tables:


Illustration 8.1: Typical efficiency curves

Example: Assume a \(55 \mathrm{~kW}, 380-480\) VAC frequency converter at \(25 \%\) load at \(50 \%\) speed. The graph is showing 0,97 - rated efficiency for a 55 kW FC is 0.98 . The actual efficiency is then: \(0,97 \times 0,98=0,95\).

\section*{Efficiency of the motor (пмотов)}

The efficiency of a motor connected to the frequency converter depends on magnetizing level. In general, the efficiency is just as good as with mains operation. The efficiency of the motor depends on the type of motor.

In the range of \(75-100 \%\) of the rated torque, the efficiency of the motor is practically constant, both when it is controlled by the frequency converter and when it runs directly on mains.

In small motors, the influence from the U/f characteristic on efficiency is marginal. However, in motors from 11 kW and up, the advantages are significant.

In general, the switching frequency does not affect the efficiency of small motors. Motors from 11 kW and up have their efficiency improved (1-2\%). This is because the sine shape of the motor current is almost perfect at high switching frequency.

\section*{Efficiency of the system ( \(\eta_{\text {SYSTEM }}\) )}

To calculate the system efficiency, the efficiency of the frequency converter ( \(\eta_{V L T}\) ) is multiplied by the efficiency of the motor ( \(\eta_{\text {motor }}\) ):
\(\left.\eta_{\text {SYSTEM }}\right)=\eta_{\text {VLT }} \times \eta_{\text {MOTOR }}\)

\subsection*{8.4 Acoustic Noise}

\section*{The acoustic noise from the frequency converter comes from three sources:}
1. DC intermediate circuit coils.
2. Integral fan.
3. RFI filter choke.

The typical values measured at a distance of 1 m from the unit:
\begin{tabular}{|c|c|c|}
\hline Enclosure & At reduced fan speed (50\%) [dBA] *** & Full fan speed [dBA] \\
\hline A2 & 51 & 60 \\
\hline A3 & 51 & 60 \\
\hline A5 & 54 & 63 \\
\hline B1 & 61 & 67 \\
\hline B2 & 58 & 70 \\
\hline B3 & 59.4 & 70.5 \\
\hline B4 & 53 & 62.8 \\
\hline C1 & 52 & 62 \\
\hline C2 & 55 & 65 \\
\hline C3 & 56.4 & 67.3 \\
\hline C4 & - & - \\
\hline D1/D3 & 74 & 76 \\
\hline D2/D4 & 73 & 74 \\
\hline E1/E2* & 73 & 74 \\
\hline ** & 82 & 83 \\
\hline F1/F2/F3/F4 & 78 & 80 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
* \(315 \mathrm{~kW}, 380-480\) VAC and 450-500 kW, 525-690 VAC only! \\
** Remaining E1/E2 power sizes. \\
*** For D, E and F sizes, reduced fan speed is at \(87 \%\), measured at 200 V .
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{8.5 Peak Voltage on Motor}

When a transistor in the inverter bridge switches, the voltage across the motor increases by a du/dt ratio depending on:
- the motor cable (type, cross-section, length screened or unscreened)
- inductance

The natural induction causes an overshoot UPEAK in the motor voltage before it stabilizes itself at a level depending on the voltage in the intermediate circuit. The rise time and the peak voltage UPEAK \(a f f e c t\) the service life of the motor. If the peak voltage is too high, especially motors without phase coil insulation are affected. If the motor cable is short (a few metres), the rise time and peak voltage are lower.
If the motor cable is long ( 100 m ), the rise time and peak voltage increases.

In motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supply (such as a frequency converter), fit a sine-wave filter on the output of the frequency converter.

To obtain approximate values for cable lengths and voltages not mentioned below, use the following rules of thumb:
\begin{tabular}{|ll|}
\hline 1. & Rise time increases/decreases proportionally with cable length. \\
2. & \begin{tabular}{l} 
UPEAK \(=\mathrm{DC}\) link voltage \(\times 1.9\) \\
\((\mathrm{DC}\) link voltage \(=\) Mains voltage \(\times 1.35)\). \\
3. \\
\\
\\
\\
\end{tabular}\(\quad\)\begin{tabular}{l}
\(0.8 \times U_{\text {PEAK }}\) \\
Risetime
\end{tabular} \\
\hline
\end{tabular}

Data are measured according to IEC 60034-17.
Cable lengths are in metres.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Frequency Converter, P5K5, T2} \\
\hline \begin{tabular}{l}
Cable \\
length [m]
\end{tabular} & \begin{tabular}{l}
Mains \\
voltage [V]
\end{tabular} & Rise time [ \(\mu \mathrm{sec}\) ] & \begin{tabular}{l}
Vpeak \\
[kV]
\end{tabular} & \begin{tabular}{l}
dU/dt \\
[kV/ usec\(]\)
\end{tabular} \\
\hline 36 & 240 & 0.226 & 0.616 & 2.142 \\
\hline 50 & 240 & 0.262 & 0.626 & 1.908 \\
\hline 100 & 240 & 0.650 & 0.614 & 0.757 \\
\hline 150 & 240 & 0.745 & 0.612 & 0.655 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Frequency Converter, P7K5, T2} \\
\hline Cable & Mains & Rise time & Vpeak & dU/dt \\
\hline length [m] & voltage [V] & [ \(\mu \mathrm{sec}\) ] & [kV] & [ \(\mathrm{kV} / \mathrm{Hsec}\) ] \\
\hline 5 & 230 & 0.13 & 0.510 & 3.090 \\
\hline 50 & 230 & 0.23 & 0.590 & 2.034 \\
\hline 100 & 230 & 0.54 & 0.580 & 0.865 \\
\hline 150 & 230 & 0.66 & 0.560 & 0.674 \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P11K, T2 & & & \\
\begin{tabular}{llll|} 
Cable & Mains & Rise time & Vpeak \\
length \([\mathrm{m}]\) & voltage \([\mathrm{V}]\) & {\([\mu \mathrm{sec}]\)} & {\([\mathrm{kV}]\)}
\end{tabular} & \(\mathrm{dU} / \mathrm{dt}\) \\
\hline 36 & 240 & 0.264 & 0.624 & 1.894 \\
136 & 240 & 0.536 & 0.596 & 0.896 \\
150 & 240 & 0.568 & 0.568 & 0.806 \\
\hline
\end{tabular}
\(\left.\begin{array}{|lllll|}\hline \text { Frequency Converter, P15K, T2 } & & & \\
\begin{array}{llll}\text { Cable } & \text { Mains } \\
\text { length }[\mathrm{m}] & \text { voltage }[\mathrm{V}] & \text { Rise time } & {[\mu \mathrm{sec}]}\end{array} & \begin{array}{l}\text { Vpeak } \\
{[\mathrm{kV}]}\end{array} & {[\mathrm{dU} / \mathrm{dt} / \mu \mathrm{sec}]}\end{array}\right]\)\begin{tabular}{llll|}
\hline 30 & 240 & 0.556 & 0.650 \\
\hline 100 & 240 & 0.592 & 0.594 \\
150 & 240 & 0.708 & 0.575 \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P18K, T2 & & & \\
\begin{tabular}{llll} 
Cable & Mains \\
length \([\mathrm{m}]\)
\end{tabular} & \begin{tabular}{l} 
Rise time \\
voltage \([\mathrm{V}]\)
\end{tabular} & {\([\mu \mathrm{sec}]\)} & Vpeak & {\([\mathrm{kV}]\)}
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, \(\mathbf{P 2 2 K}\), T2 & & & \\
Cable & Mains & Rise time & Vpeak & \(\mathrm{dU} / \mathrm{dt}\) \\
length \([\mathrm{m}]\) & voltage \([\mathrm{V}]\) & {\([\mathrm{sec}]\)} & {\([\mathrm{kV}]\)} & {\([\mathrm{kV} / \mathrm{\mu sec}]\)} \\
\hline 36 & 240 & 0.244 & 0.608 & 1.993 \\
136 & 240 & 0.560 & 0.580 & 0.832 \\
150 & 240 & 0.720 & 0.574 & 0.661 \\
\hline
\end{tabular}

\section*{Frequency Converter, P30K, T2}
\begin{tabular}{lllll|}
\begin{tabular}{lll} 
Cable \\
length \([\mathrm{m}]\)
\end{tabular} & \begin{tabular}{l} 
Mains \\
voltage \([\mathrm{V}]\)
\end{tabular} & \begin{tabular}{l} 
Rise time \\
{\([\mu \mathrm{sec}]\)}
\end{tabular} & \begin{tabular}{l} 
Vpeak \\
{\([\mathrm{kV}]\)}
\end{tabular} & \begin{tabular}{l}
\(\mathrm{dU} / \mathrm{dt}\) \\
{\([\mathrm{kV} / \mu \mathrm{sec}]\)}
\end{tabular} \\
\hline 15 & 240 & 0.194 & 0.626 & 2.581 \\
50 & 240 & 0.252 & 0.574 & 1.929 \\
\hline 150 & 240 & 0.444 & 0.538 & 0.977 \\
\hline
\end{tabular}
\(\left.\begin{array}{|lllll|}\hline \text { Frequency Converter, P37K, T2 } & & & \\
\begin{array}{llll}\text { Cable } \\
\text { length }[\mathrm{m}]\end{array} & \begin{array}{l}\text { Mains } \\
\text { voltage }[\mathrm{V}]\end{array} & \begin{array}{l}\text { Rise time } \\
{[\mu \mathrm{sec}]}\end{array} & \begin{array}{l}\text { Vpeak } \\
{[\mathrm{kV}]}\end{array} & \mathrm{dU} / \mathrm{dt} \\
\hline 30 & 240 & 0.300 & 0.598 & {[\mathrm{kV} / \mu \mathrm{sec}]}\end{array}\right]\)\begin{tabular}{llll}
1.593 \\
100 & 240 & 0.536 & 0.566 \\
150 & 240 & 0.776 & 0.546 \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P45K, T2 & & & \\
\begin{tabular}{llll} 
Cable & Mains \\
length \([\mathrm{m}]\)
\end{tabular} & Roltage \([\mathrm{V}]\) & {\([\mu \mathrm{sec}]\)} & Vpeak time & {\([\mathrm{kV}]\)}
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P1K5, T4 & & & \\
\begin{tabular}{llll} 
Cable \\
length \([\mathrm{m}]\)
\end{tabular} & \begin{tabular}{ll} 
Mains \\
voltage \([\mathrm{V}]\)
\end{tabular} & \begin{tabular}{l} 
Rise time \\
{\([\mu \mathrm{sec}]\)}
\end{tabular} & \begin{tabular}{l} 
Vpeak \\
{\([\mathrm{kV}]\)}
\end{tabular} & \begin{tabular}{l}
\(\mathrm{dU} / \mathrm{dt}\) \\
{\([\mathrm{kV} / \mu \mathrm{sec}]\)}
\end{tabular} \\
\hline 5 & 400 & 0.640 & 0.690 & 0.862 \\
50 & 400 & 0.470 & 0.985 & 0.985 \\
150 & 400 & 0.760 & 1.045 & 0.947 \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Frequency Converter, P4K0, T4 & & & \\
\begin{tabular}{llll} 
Cable & Mains \\
length \([\mathrm{m}]\)
\end{tabular} & \begin{tabular}{l} 
Rise time \\
voltage \([\mathrm{V}]\)
\end{tabular} & {\([\mu \mathrm{sec}]\)} & Vpeak \\
\hline 5 & 400 & 0.172 & {\([\mathrm{kV}]\)}
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P7K5, T4 & & & \\
\begin{tabular}{llll} 
Cable & Mains \\
length \([\mathrm{m}]\)
\end{tabular} & \begin{tabular}{l} 
Rise time \\
voltage \([\mathrm{V}]\)
\end{tabular} & {\([\mu \mathrm{sec}]\)} & Vpeak & {\([\mathrm{kV}]\)}
\end{tabular}

ARMSTRONG
\begin{tabular}{|lllll|}
\hline Frequency Converter, P11K, T4 & & & \\
\begin{tabular}{llll} 
Cable & Mains \\
length \([\mathrm{m}]\) & voltage \([\mathrm{V}]\) & Rise time & {\([\mu \mathrm{sec}]\)}
\end{tabular} & \begin{tabular}{l} 
Vpeak \\
{\([\mathrm{kV}]\)}
\end{tabular} & {\([\mathrm{dU} / \mathrm{dt}\)} \\
\hline 15 & 400 & 0.408 & 0.718 & 1.402 \\
100 & 400 & 0.364 & 1.050 & 2.376 \\
150 & 400 & 0.400 & 0.980 & 2.000 \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P15K, T4 & & & \\
\begin{tabular}{llll} 
Cable & Mains \\
length \([\mathrm{m}]\)
\end{tabular} & \begin{tabular}{l} 
Rise time \\
voltage \([\mathrm{V}]\)
\end{tabular} & {\([\mu \mathrm{sec}]\)} & Vpeak & {\([\mathrm{kV}]\)}
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P18K, T4 & & & \\
\hline \begin{tabular}{llll} 
Cable & Mains \\
length \([\mathrm{m}]\)
\end{tabular} & \begin{tabular}{l} 
Rise time \\
voltage \([\mathrm{V}]\)
\end{tabular} & {\([\mu \mathrm{sec}]\)} & Vpeak & {\([\mathrm{kV}]\)}
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P22K, T4 & & & \\
Cable & Mains & Rise time & Vpeak & \(\mathrm{dU} / \mathrm{dt}\) \\
length \([\mathrm{m}]\) & voltage \([\mathrm{V}]\) & {\([\mu \mathrm{sec}]\)} & {\([\mathrm{kV}]\)} & 3.534 \\
\hline 36 & 400 & 0.232 & 0.950 & 1.927 \\
100 & 400 & 0.410 & 0.980 & 1.860 \\
150 & 400 & 0.430 & 0.970 & \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P30K, T4 & & & \\
\begin{tabular}{llll} 
Cable & Mains \\
length \([\mathrm{m}]\)
\end{tabular} & \begin{tabular}{l} 
Rise time
\end{tabular} & \begin{tabular}{l} 
Vpeak \\
voltage \([\mathrm{V}]\)
\end{tabular} & {\([\mu \mathrm{sec}]\)} & {\([\mathrm{kV}]\)}
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Frequency Converter, P37K, T4} \\
\hline Cable & Mains & Rise time & Vpeak & dU/dt \\
\hline length [m] & voltage & [ \(\mu \mathrm{sec}\) ] & [kV] & [ \(\mathrm{kV} / \mathrm{\mu sec}\) ] \\
\hline 5 & 480 & 0.270 & 1.276 & 3.781 \\
\hline 50 & 480 & 0.435 & 1.184 & 2.177 \\
\hline 100 & 480 & 0.840 & 1.188 & 1.131 \\
\hline 150 & 480 & 0.940 & 1.212 & 1.031 \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline \begin{tabular}{llll} 
Frequency Converter, P45K, T4 \\
Cable & Mains \\
length \([\mathrm{m}]\)
\end{tabular} & \begin{tabular}{l} 
Rise time \\
voltage \([\mathrm{V}]\)
\end{tabular} & {\([\mu \mathrm{sec}]\)} & \begin{tabular}{l} 
Vpeak \\
{\([\mathrm{kV}]\)}
\end{tabular} & \begin{tabular}{l}
\(\mathrm{dU} / \mathrm{dt}\) \\
{\([\mathrm{kV} / \mu \mathrm{sec}]\)}
\end{tabular} \\
\hline 36 & 400 & 0.254 & 1.056 & 3.326 \\
50 & 400 & 0.465 & 1.048 & 1.803 \\
100 & 400 & 0.815 & 1.032 & 1.013 \\
150 & 400 & 0.890 & 1.016 & 0.913 \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P55K, T4 & & & \\
\begin{tabular}{llll} 
Cable & Mains & Rise time & Vpeak \\
length \([\mathrm{m}]\) & voltage \([\mathrm{V}]\) & {\([\mu \mathrm{sec}]\)} & {\([\mathrm{kV}]\)}
\end{tabular} & \(\mathrm{dU} / \mathrm{dt}\) \\
\hline 10 & 400 & 0.350 & 0.932 & 2.130 \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P75K, T4 & & & \\
Cable & Mains & Rise time & Vpeak & {\([\mathrm{dU} / \mathrm{dt}\)} \\
length \([\mathrm{m}]\) & voltage \([\mathrm{V}]\) & {\([\mu \mathrm{sec}]\)} & {\([\mathrm{kV}]\)} & 2.466 \\
\hline 5 & 480 & 0.371 & 1.170 & \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline Frequency Converter, P90K, T4 & & & \\
\begin{tabular}{llll} 
Cable & Mains & Rise time & Vpeak \\
length \([\mathrm{m}]\) & voltage \([\mathrm{V}]\) & {\([\mu \mathrm{sec}]\)} & {\([\mathrm{kV}]\)}
\end{tabular} & \(\mathrm{dU} / \mathrm{dt}\) \\
\hline 5 & 400 & 0.364 & 1.030 & 2.264 \\
\hline
\end{tabular}

High Power Range:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Frequency Converter, P110-P250, T4} \\
\hline Cable length [m] & \begin{tabular}{l}
Mains \\
voltage [V]
\end{tabular} & Rise time [ \(\mu \mathrm{sec}\) ] & \begin{tabular}{l}
Vpeak \\
[kV]
\end{tabular} & \begin{tabular}{l}
dU/dt \\
[kV/ \(\mu \mathrm{sec}\) ]
\end{tabular} \\
\hline 30 & 400 & 0.34 & 1.040 & 2.447 \\
\hline \multicolumn{5}{|l|}{Frequency Converter, P315-P1M0, T4} \\
\hline \begin{tabular}{l}
Cable \\
length [m]
\end{tabular} & \begin{tabular}{l}
Mains \\
voltage [V]
\end{tabular} & Rise time [ \(\mu \mathrm{sec}\) ] & \begin{tabular}{l}
Vpeak \\
[kV]
\end{tabular} & \begin{tabular}{l}
dU/dt \\
[kV/ \(/ \mathrm{sec}\) ]
\end{tabular} \\
\hline 30 & 500 & 0.71 & 1.165 & 1.389 \\
\hline 30 & 400 & 0.61 & 0.942 & 1.233 \\
\hline 30 & \(500{ }^{1}\) & 0.80 & 0.906 & 0.904 \\
\hline 30 & \(400{ }^{1}\) & 0.82 & 0.760 & 0.743 \\
\hline
\end{tabular}

Table 8.6: 1: With Danfoss dU/dt filter.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Frequency Converter, P110-P400, T7} \\
\hline Cable length [m] & \begin{tabular}{l}
Mains \\
voltage [V]
\end{tabular} & Rise time [ \(\mu \mathrm{sec}\) ] & \begin{tabular}{l}
Vpeak \\
[kV]
\end{tabular} & \begin{tabular}{l}
dU/dt \\
[kV/ \(\mu \mathrm{sec}\) ]
\end{tabular} \\
\hline 30 & 690 & 0.38 & 1.513 & 3.304 \\
\hline 30 & 575 & 0.23 & 1.313 & 2.750 \\
\hline 30 & \(690{ }^{\text {1) }}\) & 1.72 & 1.329 & 0.640 \\
\hline \multicolumn{5}{|l|}{1) With Danfoss dU/dt filter.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Frequency Converter, P450-P1M4, 77} \\
\hline Cable length [m] & \begin{tabular}{l}
Mains \\
voltage [V]
\end{tabular} & Rise time [ \(\mu \mathrm{sec}\) ] & \begin{tabular}{l}
Vpeak \\
[kV]
\end{tabular} & \begin{tabular}{l}
dU/dt \\
[kV/ \(\mu \mathrm{sec}\) ]
\end{tabular} \\
\hline 30 & 690 & 0.57 & 1.611 & 2.261 \\
\hline 30 & 575 & 0.25 & & 2.510 \\
\hline 30 & \(690{ }^{1)}\) & 1.13 & 1.629 & 1.150 \\
\hline \multicolumn{5}{|l|}{1) With Danfoss dU/dt filter.} \\
\hline
\end{tabular}

\subsection*{8.6 Special Conditions}

\subsection*{8.6.1 Purpose of Derating}

Derating must be taken into account when using the frequency converter at low air pressure (heights), at low speeds, with long motor cables, cables with a large cross section or at high ambient temperature. The required action is described in this section.

\subsection*{8.6.2 Derating for ambient temperature}
\(90 \%\) frequency converter output current can be maintained up to max. \(50^{\circ} \mathrm{C}\) ambient temperature.

With a typical full load current of EFF 2 motors, full output shaft power can be maintained up to \(50^{\circ} \mathrm{C}\).
For more specific data and/or derating information for other motors or conditions, please contact Danfoss.

\subsection*{8.6.3 Automatic adaptations to ensure performance}

The frequency converter constantly checks for critical levels of internal temperature, load current, high voltage on the intermediate circuit and low motor speeds. As a response to a critical level, the frequency converter can adjust the switching frequency and / or change the switching pattern in order to ensure the performance of the frequency converter. The capability to automatically reduce the output current extends the acceptable operating conditions even further

\subsection*{8.6.4 Derating for low air pressure}

The cooling capability of air is decreased at lower air pressure.

Below 1000 m altitude no derating is necessary but above 1000 m the ambient temperature ( \(\mathrm{T}_{\text {AMB }}\) ) or max. output current (Iout) should be derated in accordance with the shown diagram.


Illustration 8.2: Derating of output current versus altitude at \(\mathrm{T}_{\mathrm{AMB}, \mathrm{MAX}}\) for frame sizes \(\mathrm{A}, \mathrm{B}\) and C . At altitudes above 2 km , please contact Danfoss regarding PELV.

An alternative is to lower the ambient temperature at high altitudes and thereby ensure \(100 \%\) output current at high altitudes. As an example of how to read the graph, the situation at 2 km is elaborated. At a temperature of \(45^{\circ} \mathrm{C}\) ( \(\mathrm{T}_{\text {AMB, MAX }}-3.3 \mathrm{~K}\) ), \(91 \%\) of the rated output current is available. At a temperature of \(41.7^{\circ} \mathrm{C}, 100 \%\) of the rated output current is available.



Derating of output current versus altitude at TAMB, max for frame sizes \(\mathrm{D}, \mathrm{E}\) and F .

\subsection*{8.6.5 Derating for running at low speed}

When a motor is connected to a frequency converter, it is necessary to check that the cooling of the motor is adequate.
The level of heating depends on the load on the motor, as well as the operating speed and time.

\section*{Constant torque applications (CT mode)}

A problem may occur at low RPM values in constant torque applications. In a constant torque application s a motor may over-heat at low speeds due to less cooling air from the motor integral fan.
Therefore, if the motor is to be run continuously at an RPM value lower than half of the rated value, the motor must be supplied with additional air-cooling (or a motor designed for this type of operation may be used).

An alternative is to reduce the load level of the motor by choosing a larger motor. However, the design of the frequency converter puts a limit to the motor size.

\section*{Variable (Quadratic) torque applications (VT)}

In VT applications such as centrifugal pumps and fans, where the torque is proportional to the square of the speed and the power is proportional to the cube of the speed, there is no need for additional cooling or de-rating of the motor.

In the graphs shown below, the typical VT curve is below the maximum torque with de-rating and maximum torque with forced cooling at all speeds.

Maximum load for a standard motor at \(40^{\circ} \mathrm{C}\) driven by a frequency converter type IVS 102 FCxxx


Legend: ----Typical torque at VT load -.-.-.-Max torque with forced cooling ——Max torque Note 1) Over-syncronous speed operation will result in the available motor torque decreasing inversely proportional with the increase in speed. This must be considered during the design phase to avoid over-loading of the motor.

\subsection*{8.7 Troubleshooting}

\subsection*{8.7.1 Alarms and Warnings}

A warning or an alarm is signalled by the relevant LED on the front of the frequency converter and indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances operation of the motor may still be continued. Warning messages may be critical, but are not necessarily so.

In the event of an alarm, the frequency converter will have tripped. Alarms must be reset to restart operation once their cause has been rectified.
This may be done in four ways:
1. By using the [RESET] control button on the LCP.
2. Via a digital input with the "Reset" function.
3. Via serial communication/optional fieldbus.
4. By resetting automatically using the [Auto Reset] function, which is a default setting for IVS 102 Drive Drive, see par. 14-20 Reset Mode in the FC 100 Programming Guide

NB!
After a manual reset using the [RESET] button on the LCP, the [AUTO ON] or [HAND ON] button must be pressed to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also table on following page).


Alarms that are trip-locked offer additional protection, means that the mains supply must be switched off before the alarm can be reset. After being switched back on, the frequency converter is no longer blocked and may be reset as described above once the cause has been rectified.
Alarms that are not trip-locked can also be reset using the automatic reset function in par. 14-20 Reset Mode (Warning: automatic wake-up is possible!)
If a warning and alarm is marked against a code in the table on the following page, this means that either a warning occurs before an alarm, or it can be specified whether it is a warning or an alarm that is to be displayed for a given fault.
This is possible, for instance, in par. 1-90 Motor Thermal Protection. After an alarm or trip, the motor carries on coasting, and the alarm and warning flash on the frequency converter. Once the problem has been rectified, only the alarm continues flashing.
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Description & Warning & Alarm/Trip & Alarm/Trip Lock & Parameter Reference \\
\hline 1 & 10 Volts low & X & & & \\
\hline 2 & Live zero error & (X) & (X) & & 6-01 \\
\hline 3 & No motor & (X) & & & 1-80 \\
\hline 4 & Mains phase loss & (X) & (X) & (X) & 14-12 \\
\hline 5 & DC link voltage high & X & & & \\
\hline 6 & DC link voltage low & X & & & \\
\hline 7 & DC over voltage & X & \(x\) & & \\
\hline 8 & DC under voltage & X & X & & \\
\hline 9 & Inverter overloaded & X & X & & \\
\hline 10 & Motor ETR over temperature & (X) & (X) & & 1-90 \\
\hline 11 & Motor thermistor over temperature & (X) & (X) & & 1-90 \\
\hline 12 & Torque limit & X & X & & \\
\hline 13 & Over Current & x & X & \(x\) & \\
\hline 14 & Earth fault & X & X & X & \\
\hline 15 & Hardware mismatch & & X & X & \\
\hline 16 & Short Circuit & & X & X & \\
\hline 17 & Control word timeout & (X) & (X) & & 8-04 \\
\hline 23 & Internal Fan Fault & X & & & \\
\hline 24 & External Fan Fault & X & & & 14-53 \\
\hline 25 & Brake resistor short-circuited & X & & & \\
\hline 26 & Brake resistor power limit & (X) & (X) & & 2-13 \\
\hline 27 & Brake chopper short-circuited & X & X & & \\
\hline 28 & Brake check & (X) & (X) & & 2-15 \\
\hline 29 & Drive over temperature & X & X & X & \\
\hline 30 & Motor phase U missing & (X) & (X) & (X) & 4-58 \\
\hline 31 & Motor phase V missing & (X) & (X) & (X) & 4-58 \\
\hline 32 & Motor phase W missing & (X) & (X) & (X) & 4-58 \\
\hline 33 & Inrush fault & & X & X & \\
\hline 34 & Fieldbus communication fault & X & X & & \\
\hline 35 & Out of frequency range & X & X & & \\
\hline 36 & Mains failure & X & X & & \\
\hline 37 & Phase Imbalance & X & X & & \\
\hline 38 & Internal fault & & X & \(x\) & \\
\hline 39 & Heatsink sensor & & X & X & \\
\hline 40 & Overload of Digital Output Terminal 27 & (X) & & & 5-00, 5-01 \\
\hline 41 & Overload of Digital Output Terminal 29 & (X) & & & 5-00, 5-02 \\
\hline 42 & Overload of Digital Output On X30/6 & (X) & & & 5-32 \\
\hline 42 & Overload of Digital Output On X30/7 & (X) & & & 5-33 \\
\hline 46 & Pwr. card supply & & X & x & \\
\hline 47 & 24 V supply low & X & \(x\) & X & \\
\hline 48 & 1.8 V supply low & & X & X & \\
\hline 49 & Speed limit & X & (X) & & 1-86 \\
\hline 50 & AMA calibration failed & & X & & \\
\hline 51 & AMA check \(U_{\text {nom }}\) and Inom & & X & & \\
\hline 52 & AMA low \(\mathrm{I}_{\text {nom }}\) & & X & & \\
\hline 53 & AMA motor too big & & X & & \\
\hline 54 & AMA motor too small & & X & & \\
\hline 55 & AMA Parameter out of range & & X & & \\
\hline 56 & AMA interrupted by user & & X & & \\
\hline 57 & AMA timeout & & X & & \\
\hline 58 & AMA internal fault & \(x\) & X & & \\
\hline 59 & Current limit & X & & & \\
\hline 60 & External Interlock & X & & & \\
\hline 62 & Output Frequency at Maximum Limit & X & & & \\
\hline 64 & Voltage Limit & X & & & \\
\hline 65 & Control Board Over-temperature & X & X & X & \\
\hline
\end{tabular}

Table 8.7: Alarm/Warning code list
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Description & Warning & Alarm/Trip & Alarm/Trip Lock & Parameter Reference \\
\hline 66 & Heat sink Temperature Low & X & & & \\
\hline 67 & Option Configuration has Changed & & X & & \\
\hline 68 & Safe Stop Activated & & \(\mathrm{X}^{1}\) & & \\
\hline 69 & Pwr. Card Temp & & X & X & \\
\hline 70 & Illegal FC configuration & & & X & \\
\hline 71 & PTC 1 Safe Stop & X & \(\mathrm{X}^{1)}\) & & \\
\hline 72 & Dangerous Failure & & & \(\mathrm{X}^{1)}\) & \\
\hline 73 & Safe Stop Auto Restart & & & & \\
\hline 76 & Power Unit Setup & X & & & \\
\hline 79 & Illegal PS config & & X & X & \\
\hline 80 & Drive Initialized to Default Value & & X & & \\
\hline 91 & Analog input 54 wrong settings & & & X & \\
\hline 92 & NoFlow & X & X & & 22-2* \\
\hline 93 & Dry Pump & X & X & & 22-2* \\
\hline 94 & End of Curve & X & X & & 22-5* \\
\hline 95 & Broken Belt & X & X & & 22-6* \\
\hline 96 & Start Delayed & X & & & 22-7* \\
\hline 97 & Stop Delayed & X & & & 22-7* \\
\hline 98 & Clock Fault & X & & & 0-7* \\
\hline 201 & Fire M was Active & & & & \\
\hline 202 & Fire M Limits Exceeded & & & & \\
\hline 203 & Missing Motor & & & & \\
\hline 204 & Locked Rotor & & & & \\
\hline 243 & Brake IGBT & X & X & & \\
\hline 244 & Heatsink temp & X & X & X & \\
\hline 245 & Heatsink sensor & & X & X & \\
\hline 246 & Pwr.card supply & & \(x\) & \(x\) & \\
\hline 247 & Pwr.card temp & & X & X & \\
\hline 248 & Illegal PS config & & X & X & \\
\hline 250 & New spare parts & & & X & \\
\hline 251 & New Type Code & & X & X & \\
\hline
\end{tabular}

Table 8.8: Alarm/Warning code list
(X) Dependent on parameter
1) Can not be Auto reset via par. 14-20 Reset Mode

A trip is the action when an alarm has appeared. The trip will coast the motor and can be reset by pressing the reset button or make a reset by a digital input (parameter group 5-1*[1]). The original event that caused an alarm cannot damage the frequency converter or cause dangerous conditions. A trip lock is an action when an alarm occurs, which may cause damage to frequency converter or connected parts. A Trip Lock situation can only be reset by a power cycling.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ LED indication } \\
\hline Warning & yellow \\
\hline Alarm & flashing red \\
\hline Trip locked & yellow and red \\
\hline
\end{tabular}

Table 8.9: LED Indication
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{Alarm Word and Extended Status Word} \\
\hline & Bit & Hex & Dec & Alarm Word & Warning Word & Extended Status Word \\
\hline & 0 & 00000001 & 1 & Brake Check & Brake Check & Ramping \\
\hline & 1 & 00000002 & 2 & Pwr. Card Temp & Pwr. Card Temp & AMA Running \\
\hline & 2 & 00000004 & 4 & Earth Fault & Earth Fault & Start CW/CCW \\
\hline & 3 & 00000008 & 8 & Ctrl.Card Temp & Ctrl.Card Temp & Slow Down \\
\hline & 4 & 00000010 & 16 & Ctrl. Word TO & Ctrl. Word TO & Catch Up \\
\hline & 5 & 00000020 & 32 & Over Current & Over Current & Feedback High \\
\hline & 6 & 00000040 & 64 & Torque Limit & Torque Limit & Feedback Low \\
\hline & 7 & 00000080 & 128 & Motor Th Over & Motor Th Over & Output Current High \\
\hline & 8 & 00000100 & 256 & Motor ETR Over & Motor ETR Over & Output Current Low \\
\hline & 9 & 00000200 & 512 & Inverter Overld. & Inverter Overld. & Output Freq High \\
\hline & 10 & 00000400 & 1024 & DC under Volt & DC under Volt & Output Freq Low \\
\hline & 11 & 00000800 & 2048 & DC over Volt & DC over Volt & Brake Check OK \\
\hline & 12 & 00001000 & 4096 & Short Circuit & DC Voltage Low & Braking Max \\
\hline & 13 & 00002000 & 8192 & Inrush Fault & DC Voltage High & Braking \\
\hline & 14 & 00004000 & 16384 & Mains ph. Loss & Mains ph. Loss & Out of Speed Range \\
\hline & 15 & 00008000 & 32768 & AMA Not OK & No Motor & OVC Active \\
\hline & 16 & 00010000 & 65536 & Live Zero Error & Live Zero Error & \\
\hline & 17 & 00020000 & 131072 & Internal Fault & 10V Low & \\
\hline & 18 & 00040000 & 262144 & Brake Overload & Brake Overload & \\
\hline & 19 & 00080000 & 524288 & U phase Loss & Brake Resistor & \\
\hline \multirow{11}{*}{} & 20 & 00100000 & 1048576 & \(\checkmark\) phase Loss & Brake IGBT & \\
\hline & 21 & 00200000 & 2097152 & W phase Loss & Speed Limit & \\
\hline & 22 & 00400000 & 4194304 & Fieldbus Fault & Fieldbus Fault & \\
\hline & 23 & 00800000 & 8388608 & 24 V Supply Low & 24V Supply Low & \\
\hline & 24 & 01000000 & 16777216 & Mains Failure & Mains Failure & \\
\hline & 25 & 02000000 & 33554432 & 1.8V Supply Low & Current Limit & \\
\hline & 26 & 04000000 & 67108864 & Brake Resistor & Low Temp & \\
\hline & 27 & 08000000 & 134217728 & Brake IGBT & Voltage Limit & \\
\hline & 28 & 10000000 & 268435456 & Option Change & Unused & \\
\hline & 29 & 20000000 & 536870912 & Drive Initialized & Unused & \\
\hline & 30 & 40000000 & 1073741824 & Safe Stop & Unused & \\
\hline
\end{tabular}

Table 8.10: Description of Alarm Word, Warning Word and Extended Status Word

The alarm words, warning words and extended status words can be read out via serial bus or optional fieldbus for diagnosis. See also par. 16-90 Alarm Word, par. 16-92 Warning Word and par. 16-94 Ext. Status Word.

\subsection*{8.7.2 Alarm Words}

Alarm word, par. 16-90 Alarm Word
\begin{tabular}{|ll|}
\hline \begin{tabular}{c} 
Bit \\
(Hex) \\
00000001
\end{tabular} & \begin{tabular}{l} 
Alarm Word \\
(par. 16-90 Alarm Word)
\end{tabular} \\
\hline 00000002 & Brake check \\
00000004 & Earth fault over temperature \\
\hline 00000008 & Ctrl. card over temperature \\
\hline 00000010 & Control word timeout \\
\hline 00000020 & Over current \\
\hline 00000040 & Torque limit \\
\hline 00000080 & Motor thermistor over temp. \\
\hline 00000100 & Motor ETR over temperature \\
\hline 00000200 & Inverter overloaded \\
\hline 00000400 & DC link under voltage \\
\hline 00000800 & DC link over voltage \\
\hline 00001000 & Short circuit \\
\hline 00002000 & Inrush fault \\
\hline 00004000 & Mains phase loss \\
\hline 00008000 & AMA not OK \\
\hline 00010000 & Live zero error \\
\hline 00020000 & Internal fault \\
\hline 00040000 & Brake overload \\
\hline 00080000 & Motor phase U is missing \\
\hline 00100000 & Motor phase V is missing \\
\hline 00200000 & Motor phase W is missing \\
\hline 00400000 & Fieldbus fault \\
\hline 00800000 & \(24 V\) supply fault \\
\hline 01000000 & Mains failure \\
\hline 02000000 & 1.8V supply fault \\
\hline 04000000 & Brake resistor short circuit \\
\hline 08000000 & Brake chopper fault \\
\hline 10000000 & Option change \\
\hline 20000000 & Drive initialized \\
\hline 40000000 & Safe Stop \\
\hline 80000000 & Not used \\
\hline & \\
\hline
\end{tabular}

Alarm word 2, par. 16-91 Alarm Word 2
\begin{tabular}{|ll|}
\hline \multicolumn{1}{c}{\begin{tabular}{l} 
Bit \\
(Hex)
\end{tabular}} & \begin{tabular}{l} 
Alarm Word 2 \\
(par. 16-91 Alarm Word 2)
\end{tabular} \\
\hline 00000001 & Service Trip, read / Write \\
\hline 00000002 & Reserved \\
\hline 00000004 & Service Trip, Typecode / \\
\hline 00000008 & Sparepart \\
\hline 00000010 & Reserved \\
\hline 00000020 & No Flow \\
\hline 00000040 & Dry Pump \\
\hline 00000080 & End of Curve \\
\hline 00000100 & Broken Belt \\
\hline 00000200 & Not used \\
\hline 00000400 & Not used \\
\hline 00000800 & Reserved \\
\hline 00001000 & Reserved \\
\hline 00002000 & Reserved \\
\hline 00004000 & Reserved \\
\hline 00008000 & Reserved \\
\hline 00010000 & Reserved \\
\hline 00020000 & Not used \\
\hline 00040000 & Fans error \\
\hline 00080000 & ECB error \\
\hline 00100000 & Reserved \\
\hline 00200000 & Reserved \\
\hline 00400000 & Reserved \\
\hline 00800000 & Reserved \\
\hline 01000000 & Reserved \\
\hline 02000000 & Reserved \\
\hline 04000000 & Reserved \\
\hline 08000000 & Reserved \\
\hline 10000000 & Reserved \\
\hline 20000000 & Reserved \\
\hline 40000000 & Reserved \\
\hline 8000000 & Reserved \\
\hline
\end{tabular}

\subsection*{8.7.3 Warning Words}

Warning word, par. 16-92 Warning Word
\begin{tabular}{|ll|}
\hline \begin{tabular}{c} 
Bit \\
(Hex)
\end{tabular} & \begin{tabular}{l} 
Warning Word \\
(par. 16-92 Warning Word)
\end{tabular} \\
\hline 00000001 & Brake check \\
\hline 0000002 & Power card over temperature \\
\hline 00000004 & Earth fault \\
\hline 00000008 & Ctrl. card over temperature \\
\hline 00000010 & Control word timeout \\
\hline 00000020 & Over current \\
\hline 00000040 & Torque limit \\
\hline 00000080 & Motor thermistor over temp. \\
\hline 00000100 & Motor ETR over temperature \\
\hline 00000200 & Inverter overloaded \\
\hline 00000400 & DC link under voltage \\
\hline 00000800 & DC link over voltage \\
\hline 00001000 & DC link voltage low \\
\hline 00002000 & DC link voltage high \\
\hline 00004000 & Mains phase loss \\
\hline 00008000 & No motor \\
\hline 00010000 & Live zero error \\
\hline 00020000 & 10V low \\
\hline 00040000 & Brake resistor power limit \\
\hline 00080000 & Brake resistor short circuit \\
\hline 00100000 & Brake chopper fault \\
\hline 00200000 & Speed limit \\
\hline 00400000 & Fieldbus comm. fault \\
\hline 00800000 & 24V supply fault \\
\hline 01000000 & Mains failure \\
\hline 02000000 & Current limit \\
\hline 04000000 & Low temperature \\
\hline 08000000 & Voltage limit \\
\hline 10000000 & Encoder loss \\
\hline 20000000 & Output frequency limit \\
\hline 40000000 & Not used \\
\hline 80000000 & Not used \\
\hline & \\
\hline
\end{tabular}

Warning word 2, par. 16-93 Warning Word 2
\begin{tabular}{|cl|}
\hline \begin{tabular}{c} 
Bit \\
(Hex)
\end{tabular} & \begin{tabular}{l} 
Warning Word 2 \\
(par. 16-93 Warning Word 2)
\end{tabular} \\
\hline 00000001 & Start Delayed \\
\hline 00000002 & Stop Delayed \\
\hline 00000004 & Clock Failure \\
\hline 00000008 & Reserved \\
\hline 00000010 & Reserved \\
\hline 00000020 & No Flow \\
\hline 00000040 & Dry Pump \\
\hline 00000080 & End of Curve \\
\hline 00000100 & Broken Belt \\
\hline 00000200 & Not used \\
\hline 00000400 & Reserved \\
\hline 00000800 & Reserved \\
\hline 00001000 & Reserved \\
\hline 00002000 & Reserved \\
\hline 00004000 & Reserved \\
\hline 00008000 & Reserved \\
\hline 00010000 & Reserved \\
\hline 00020000 & Not used \\
\hline 00040000 & Fans warning \\
\hline 00080000 & ECB warning \\
\hline 00100000 & Reserved \\
\hline 00200000 & Reserved \\
\hline 00400000 & Reserved \\
\hline 00800000 & Reserved \\
\hline 01000000 & Reserved \\
\hline 02000000 & Reserved \\
\hline 04000000 & Reserved \\
\hline 08000000 & Reserved \\
\hline 10000000 & Reserved \\
\hline 20000000 & Reserved \\
\hline 40000000 & Reserved \\
\hline 80000000 & Reserved \\
\hline & \\
\hline
\end{tabular}

\subsection*{8.7.4 Extended Status Words}

Extended status word, par. 16-94 Ext. Status Word
\begin{tabular}{|c|c|}
\hline  & Extended Status Word (par. 16-94 Ext. Status Word) \\
\hline 00000001 & Ramping \\
\hline 00000002 & AMA tuning \\
\hline 00000004 & Start CW/CCW \\
\hline 00000008 & Not used \\
\hline 00000010 & Not used \\
\hline 00000020 & Feedback high \\
\hline 00000040 & Feedback low \\
\hline 00000080 & Output current high \\
\hline 00000100 & Output current low \\
\hline 00000200 & Output frequency high \\
\hline 00000400 & Output frequency low \\
\hline 00000800 & Brake check OK \\
\hline 00001000 & Braking max \\
\hline 00002000 & Braking \\
\hline 00004000 & Out of speed range \\
\hline 00008000 & OVC active \\
\hline 00010000 & AC brake \\
\hline 00020000 & Password Timelock \\
\hline 00040000 & Password Protection \\
\hline 00080000 & Reference high \\
\hline 00100000 & Reference low \\
\hline 00200000 & Local Ref./Remote Ref. \\
\hline 00400000 & Reserved \\
\hline 00800000 & Reserved \\
\hline 01000000 & Reserved \\
\hline 02000000 & Reserved \\
\hline 04000000 & Reserved \\
\hline 08000000 & Reserved \\
\hline 10000000 & Reserved \\
\hline 20000000 & Reserved \\
\hline 40000000 & Reserved \\
\hline 80000000 & Reserved \\
\hline
\end{tabular}

Extended status word 2, par. 16-95 Ext. Status Word 2
\begin{tabular}{|ll|}
\hline \begin{tabular}{r} 
Bit \\
(Hex)
\end{tabular} & \begin{tabular}{l} 
Extended Status Word 2 \\
(par. 16-95 Ext. Status Word 2)
\end{tabular} \\
\hline 00000001 & Off \\
\hline 00000002 & Hand / Auto \\
00000004 & Not used \\
\hline 00000008 & Not used \\
\hline 00000010 & Not used \\
\hline 00000020 & Relay 123 active \\
\hline 00000040 & Start Prevented \\
\hline 00000080 & Control ready \\
\hline 00000100 & Drive ready \\
\hline 00000200 & Quick Stop \\
\hline 00000400 & DC Brake \\
\hline 00000800 & Stop \\
\hline 00001000 & Standby \\
\hline 00002000 & Freeze Output Request \\
\hline 00004000 & Freeze Output \\
\hline 00008000 & Jog Request \\
\hline 00010000 & Jog \\
\hline 00020000 & Start Request \\
\hline 00040000 & Start \\
\hline 00080000 & Start Applied \\
\hline 00100000 & Start Delay \\
\hline 00200000 & Sleep \\
\hline 00400000 & Sleep Boost \\
\hline 00800000 & Running \\
\hline 01000000 & Bypass \\
\hline 02000000 & Fire Mode \\
\hline 04000000 & Reserved \\
\hline 08000000 & Reserved \\
\hline 10000000 & Reserved \\
\hline 20000000 & Reserved \\
\hline 40000000 & Reserved \\
\hline 80000000 & Reserved \\
\hline
\end{tabular}

\subsection*{8.7.5 Fault Messages}

\section*{WARNING 1, 10 volts low}

The control card voltage is below 10 V from terminal 50.
Remove some of the load from terminal 50 , as the 10 V supply is overloaded. Max. 15 mA or minimum \(590 \Omega\).

This condition can be caused by a short in a connected potentiometer or improper wiring of the potentiometer.

Troubleshooting: Remove the wiring from terminal 50. If the warning clears, the problem is with the customer wiring. If the warning does not clear, replace the control card.

\section*{WARNING/ALARM 2, Live zero error}

This warning or alarm will only appear if programmed by the user in par. 6-01 Live Zero Timeout Function. The signal on one of the analog inputs is less than \(50 \%\) of the minimum value programmed for that input. This condition can be caused by broken wiring or faulty device sending the signal.

\section*{Troubleshooting:}

Check connections on all the analog input terminals. Control card terminals 53 and 54 for signals, terminal 55 common. MCB 101 terminals 11 and 12 for signals, terminal 10 common. MCB 109 terminals 1, 3, 5 for signals, terminals 2, 4, 6 common).

Check that the drive programming and switch settings match the analog signal type.

Perform Input Terminal Signal Test.

\section*{WARNING/ALARM 3, No motor}

No motor has been connected to the output of the frequency converter. This warning or alarm will only appear if programmed by the user in par. 1-80 Function at Stop.

Troubleshooting: Check the connection between the drive and the motor.

\section*{WARNING/ALARM 4, Mains phase loss}

A phase is missing on the supply side, or the mains voltage imbalance is too high. This message also appears for a fault in the input rectifier on the frequency converter. Options are programmed at par. 14-12 Function at Mains Imbalance.

Troubleshooting: Check the supply voltage and supply currents to the frequency converter.

\section*{WARNING 5, DC link voltage high}

The intermediate circuit voltage (DC) is higher than the high voltage warning limit. The limit is dependent on the drive voltage rating. The frequency converter is still active.

\section*{WARNING 6, DC link voltage low}

The intermediate circuit voltage (DC) is lower than the low voltage warning limit. The limit is dependent on the drive voltage rating. The frequency converter is still active.

\section*{WARNING/ALARM 7, DC overvoltage}

If the intermediate circuit voltage exceeds the limit, the frequency converter trips after a time.

\section*{Troubleshooting:}

Connect a brake resistor
Extend the ramp time
Change the ramp type

\section*{Activate functions in par. 2-10 Brake Function}

Increase par. 14-26 Trip Delay at Inverter Fault

\section*{WARNING/ALARM 8, DC under voltage}

If the intermediate circuit voltage (DC) drops below the under voltage limit, the frequency converter checks if a 24 V backup supply is connected. If no 24 V backup supply is connected, the frequency converter trips after a fixed time delay. The time delay varies with unit size.

\section*{Troubleshooting:}

Check that the supply voltage matches the frequency converter voltage.

Perform Input voltage test
Perform soft charge and rectifier circuit test

\section*{WARNING/ALARM 9, Inverter overloaded}

The frequency converter is about to cut out because of an overload (too high current for too long). The counter for electronic, thermal inverter protection gives a warning at \(98 \%\) and trips at \(100 \%\), while giving an alarm. The frequency converter cannot be reset until the counter is below 90\%.
The fault is that the frequency converter is overloaded by more than \(100 \%\) for too long.

\section*{Troubleshooting:}

Come the output current shown on the LCP keypad with the drive rated current.

Come the output current shown on the LCP keypad with measured motor current.

Display the Thermal Drive Load on the keypad and monitor the value. When running above the drive continuous current rating, the counter should increase. When running below the drive continuous current rating, the counter should decrease.

Note See the derating section in the Design Guide for more details if a high switching frequency is required.

\section*{WARNING/ALARM 10, Motor overload temperature}

According to the electronic thermal protection (ETR), the motor is too hot. Select whether the frequency converter gives a warning or an alarm when the counter reaches \(100 \%\) in par. 1-90 Motor Thermal Protection. The fault is that the motor is overloaded by more than \(100 \%\) for too long.

\section*{Troubleshooting:}

Check if motor is over heating.
If the motor is mechanically overloaded
That the motor par. 1-24 Motor Current is set correctly.
Motor data in parameters 1-20 through 1-25 are set correctly.
The setting in par. 1-91 Motor External Fan.
Run AMA in par. 1-29 Automatic Motor Adaptation (AMA).

\section*{WARNING/ALARM 11, Motor thermistor over temp}

The thermistor or the thermistor connection is disconnected. Select whether the frequency converter gives a warning or an alarm when the counter reaches 100\% in par. 1-90 Motor Thermal Protection.

\section*{Troubleshooting:}

Check if motor is over heating.
Check if the motor is mechanically overloaded.

Check that the thermistor is connected correctly between terminal 53 or 54 (analog voltage input) and terminal \(50(+10 \mathrm{~V}\) supply), or between terminal 18 or 19 (digital input PNP only) and terminal 50.

If a KTY sensor is used, check for correct connection between terminal 54 and 55.

If using a thermal switch or thermistor, check the programming of par. 1-93 Thermistor Source matches sensor wiring.

If using a KTY sensor, check the programming of ameters 1-95, 1-96, and 1-97 match sensor wiring.

\section*{WARNING/ALARM 12, Torque limit}

The torque is higher than the value in par. 4-16 Torque Limit Motor Mode (in motor operation) or the torque is higher than the value in par. 4-17 Torque Limit Generator Mode (in regenerative operation). Par. 14-25 Trip Delay at Torque Limit can be used to change this from a warning only condition to a warning followed by an alarm.

\section*{WARNING/ALARM 13, Over Current}

The inverter peak current limit (approx. 200\% of the rated current) is exceeded. The warning lasts about 1.5 sec ., then the frequency converter trips and issues an alarm. If extended mechanical brake control is selected, trip can be reset externally.

\section*{Troubleshooting:}

This fault may be caused by shock loading or fast acceleration with high inertia loads.

Turn off the frequency converter. Check if the motor shaft can be turned.

Check that the motor size matches the frequency converter. Incorrect motor data in parameters 1-20 through 1-25.

\section*{ALARM 14, Earth (ground) fault}

There is a discharge from the output phases to earth, either in the cable between the frequency converter and the motor or in the motor itself.

\section*{Troubleshooting:}

Turn off the frequency converter and remove the earth fault.
Measure the resistance to ground of the motor leads and the motor with a megohmmeter to check for earth faults in the motor.

Perform current sensor test.

\section*{ALARM 15, Hardware mismatch}

A fitted option is not operational with the present control board hardware or software.

Record the value of the following parameters and contact your Danfoss supplier:

\section*{Par. 15-40 FC Type}

Par. 15-41 Power Section
Par. 15-42 Voltage
Par. 15-43 Software Version
Par. 15-45 Actual Typecode String
Par. 15-49 SW ID Control Card
Par. 15-50 SW ID Power Card
Par. 15-60 Option Mounted
Par. 15-61 Option SW Version

\section*{ALARM 16, Short circuit}

There is short-circuiting in the motor or on the motor terminals.
Turn off the frequency converter and remove the short-circuit.

\section*{WARNING/ALARM 17, Control word timeout}

There is no communication to the frequency converter.
The warning will only be active when par. 8-04 Control Word Timeout Function is NOT set to OFF.
If par. 8-04 Control Word Timeout Function is set to Stop and Trip, a warning appears and the frequency converter ramps down until it trips, while giving an alarm.

\section*{Troubleshooting:}

Check connections on the serial communication cable.
Increase par. 8-03 Control Word Timeout Time
Check operation of the communication equipment.
Verify proper installation based on EMC requirements.

\section*{WARNING 23, Internal fan fault}

The fan warning function is an extra protection function that checks if the fan is running / mounted. The fan warning can be disabled in par. 14-53 Fan Monitor ([0] Disabled).

For the D, E, and F Frame drives, the regulated voltage to the fans is monitored.

\section*{Troubleshooting:}

Check fan resistance.
Check soft charge fuses.

\section*{WARNING 24, External fan fault}

The fan warning function is an extra protection function that checks if the fan is running / mounted. The fan warning can be disabled in par. 14-53 Fan Monitor ([0] Disabled).
For the D, E, and F Frame drives, the regulated voltage to the fans is monitored.

\section*{Troubleshooting:}

Check fan resistance.
Check soft charge fuses.

\section*{WARNING 25, Brake resistor short circuit}

The brake resistor is monitored during operation. If it short circuits, the brake function is disconnected and the warning appears. The frequency converter still works, but without the brake function. Turn off the frequency converter and replace the brake resistor (see par. 2-15 Brake Check).

\section*{WARNING/ALARM 26, Brake resistor power limit}

The power transmitted to the brake resistor is calculated: as a percentage, as a mean value over the last 120 seconds, on the basis of the resistance value of the brake resistor, and the intermediate circuit voltage. The warning is active when the dissipated braking power is higher than \(90 \%\). If Trip [2] has been selected in par. 2-13 Brake Power Monitoring, the frequency converter cuts out and issues this alarm, when the dissipated braking power is higher than \(100 \%\).

\section*{WARNING/ALARM 27, Brake chopper fault}

The brake transistor is monitored during operation and if it short-circuits, the brake function disconnects and issues a warning. The frequency converter is still able to run, but since the brake transistor has short-circuited, substantial power is transmitted to the brake resistor, even if it is inactive. Turn off the frequency converter and remove the brake resistor.

This alarm/ warning could also occur should the brake resistor overheat. Terminal 104 to 106 are available as brake resistor. Klixon inputs, see section Brake Resistor Temperature Switch.

\section*{WARNING/ALARM 28, Brake check failed}

Brake resistor fault: the brake resistor is not connected or not working. Check par. 2-15 Brake Check.

\section*{ALARM 29, Heatsink temp}

The maximum temperature of the heatsink has been exceeded. The temperature fault will not be reset until the temperature falls below a defined heatsink temperature. The trip and reset point are different based on the drive power size.

\section*{Troubleshooting:}

Ambient temperature too high.
Too long motor cable.
Incorrect clearance above and below the drive.
Dirty heatsink.
Blocked air flow around the drive.
Damaged heatsink fan.
For the D, E, and F Frame Drives, this alarm is based on the temperature measured by the heatsink sensor mounted inside the IGBT modules. For the F Frame drives, this alarm can also be caused by the thermal sensor in the Rectifier module.

Troubleshooting:
Check fan resistance.
Check soft charge fuses.
IGBT thermal sensor.

\section*{ALARM 30, Motor phase U missing}

Motor phase \(U\) between the frequency converter and the motor is missing.
Turn off the frequency converter and check motor phase \(U\).
ALARM 31, Motor phase V missing
Motor phase V between the frequency converter and the motor is missing. Turn off the frequency converter and check motor phase V.

\section*{ALARM 32, Motor phase W missing}

Motor phase W between the frequency converter and the motor is missing.
Turn off the frequency converter and check motor phase \(W\).

\section*{ALARM 33, Inrush fault}

Too many power-ups have occurred within a short time period. Let unit cool to operating temperature.

\section*{WARNING/ALARM 34, Fieldbus communication fault}

The fieldbus on the communication option card is not working.

\section*{WARNING/ ALARM 35, Out of frequency range:}

This warning is active if the output frequency has reached the high limit (set in par. 4-53) or low limit (set in par. 4-52). In Process Control, Closed Loop (. 1-00) this warning is displayed.

\section*{WARNING/ALARM 36, Mains failure}

This warning/alarm is only active if the supply voltage to the frequency converter is lost and par. 14-10 Mains Failure is NOT set to OFF. Check the fuses to the frequency converter

\section*{ALARM 38, Internal fault}

It may be necessary to contact your Danfoss supplier. Some typical alarm messages:
\begin{tabular}{|c|c|}
\hline 0 & Serial port cannot be initialized. Serious hardware failure \\
\hline 256-258 & Power EEPROM data is defect or too old \\
\hline 512 & Control board EEPROM data is defect or too old \\
\hline 513 & Communication time out reading EEPROM data \\
\hline 514 & Communication time out reading EEPROM data \\
\hline 515 & Application Orientated Control cannot recognize the EEPROM data \\
\hline 516 & Cannot write to the EEPROM because a write command is on progress \\
\hline 517 & Write command is under time out \\
\hline 518 & Failure in the EEPROM \\
\hline 519 & Missing or invalid Barcode data in EEPROM \\
\hline 783 & Parameter value outside of min/max limits \\
\hline \[
\begin{gathered}
1024-127 \\
9
\end{gathered}
\] & A can-telegram that has to be sent, couldn't be sent \\
\hline 1281 & Digital Signal Processor flash timeout \\
\hline 1282 & Power micro software version mismatch \\
\hline 1283 & Power EEPROM data version mismatch \\
\hline 1284 & Cannot read Digital Signal Processor software version \\
\hline 1299 & Option SW in slot A is too old \\
\hline 1300 & Option SW in slot B is too old \\
\hline 1301 & Option SW in slot C0 is too old \\
\hline 1302 & Option SW in slot C1 is too old \\
\hline 1315 & Option SW in slot A is not supported (not allowed) \\
\hline 1316 & Option SW in slot B is not supported (not allowed) \\
\hline 1317 & Option SW in slot C0 is not supported (not allowed) \\
\hline 1318 & Option SW in slot C1 is not supported (not allowed) \\
\hline 1379 & Option A did not respond when calculating Platform Version. \\
\hline 1380 & Option B did not respond when calculating Platform Version. \\
\hline 1381 & Option C0 did not respond when calculating Platform Version. \\
\hline 1382 & Option C1 did not respond when calculating Platform Version. \\
\hline 1536 & An exception in the Application Orientated Control is registered. Debug information written in LCP \\
\hline 1792 & DSP watchdog is active. Debugging of power \(t\) data Motor Orientated Control data not transferred correctly \\
\hline 2049 & Power data restarted \\
\hline \[
\begin{gathered}
\text { 2064-207 } \\
2
\end{gathered}
\] & H081x: option in slot \(x\) has restarted \\
\hline \[
\begin{gathered}
2080-208 \\
8
\end{gathered}
\] & H082x: option in slot \(x\) has issued a powerup-wait \\
\hline \[
\begin{gathered}
2096-210 \\
4
\end{gathered}
\] & H083x: option in slot x has issued a legal powerup-wait \\
\hline 2304 & Could not read any data from power EEPROM \\
\hline 2305 & Missing SW version from power unit \\
\hline 2314 & Missing power unit data from power unit \\
\hline 2315 & Missing SW version from power unit \\
\hline 2316 & Missing io_statepage from power unit \\
\hline 2324 & Power card configuration is determined to be incorrect at power up \\
\hline 2330 & Power size information between the power cards does not match \\
\hline 2561 & No communication from DSP to ATACD \\
\hline 2562 & No communication from ATACD to DSP (state running) \\
\hline 2816 & Stack overflow Control board module \\
\hline 2817 & Scheduler slow tasks \\
\hline 2818 & Fast tasks \\
\hline 2819 & Parameter thread \\
\hline 2820 & LCP Stack overflow \\
\hline 2821 & Serial port overflow \\
\hline 2822 & USB port overflow \\
\hline 2836 & cfListMempool to small \\
\hline \[
\begin{gathered}
3072-512 \\
2
\end{gathered}
\] & Parameter value is outside its limits \\
\hline 5123 & Option in slot A: Hardware incompatible with Control board hardware \\
\hline 5124 & Option in slot B: Hardware incompatible with Control board hardware \\
\hline 5125 & Option in slot CO: Hardware incompatible with Control board hardware \\
\hline 5126 & Option in slot C1: Hardware incompatible with Control board hardware \\
\hline \[
\begin{gathered}
5376-623 \\
1
\end{gathered}
\] & Out of memory \\
\hline
\end{tabular}

ALARM 39, Heatsink sensor
No feedback from the heatsink temperature sensor.
The signal from the IGBT thermal sensor is not available on the power card. The problem could be on the power card, on the gate drive card, or the ribbon cable between the power card and gate drive card.

WARNING 40, Overload of Digital Output Terminal 27
Check the load connected to terminal 27 or remove short-circuit connection. Check par. 5-00 Digital I/O Mode and par. 5-01 Terminal 27 Mode.

WARNING 41, Overload of Digital Output Terminal 29
Check the load connected to terminal 29 or remove short-circuit connection. Check par. 5-00 Digital I/O Mode and par. 5-02 Terminal 29 Mode.

WARNING 42, Overload of Digital Output on X30/6 or Overload of Digital Output on X30/7
For X30/6, check the load connected to X30/6 or remove short-circuit connection. Check par. 5-32 Term X30/6 Digi Out (MCB 101).

For X30/7, check the load connected to X30/7 or remove short-circuit connection. Check par. 5-33 Term X30/7 Digi Out (MCB 101).

\section*{ALARM 46, Power card supply}

The supply on the power card is out of range.
There are three power supplies generated by the switch mode power supply (SMPS) on the power card: \(24 \mathrm{~V}, 5 \mathrm{~V},+/-18 \mathrm{~V}\). When powered with 24 VDC with the MCB 107 option, only the 24 V and 5 V supplies are monitored. When powered with three phase mains voltage, all three supplied are monitored.

\section*{WARNING 47, 24 V supply low}

The 24 V DC is measured on the control card. The external V DC backup power supply may be overloaded, otherwise contact your Danfoss supplier.
WARNING 48, 1.8 V supply low
The 1.8 V DC supply used on the control card is outside of allowable limits. The power supply is measured on the control card.

\section*{WARNING 49, Speed limit}

When the speed is not within the specified range in par. 4-11 and par. \(4-13\). the drive will show a warning. When the speed is below the specified limit in par. 1-86 Trip Speed Low [RPM] (except when starting or stopping) the drive will trip.

\section*{ALARM 50, AMA calibration failed}

Contact your Danfoss supplier.
ALARM 51, AMA check Unom and Inom
The setting of motor voltage, motor current, and motor power is presumably wrong. Check the settings.

ALARM 52, AMA low Inom
The motor current is too low. Check the settings.

\section*{ALARM 53, AMA motor too big}

The motor is too big for the AMA to be carried out.

\section*{ALARM 54, AMA motor too small}

The motor is too big for the AMA to be carried out.

\section*{ALARM 55, AMA Parameter out of range}

The parameter values found from the motor are outside acceptable range.
ALARM 56, AMA interrupted by user
The AMA has been interrupted by the user.

\section*{ALARM 57, AMA timeout}

Try to start the AMA again a number of times, until the AMA is carried out. Please note that repeated runs may heat the motor to a level where the resistance Rs and Rr are increased. In most cases, however, this is not critical.

\section*{ALARM 58, AMA internal fault}

Contact your Danfoss supplier.

\section*{WARNING 59, Current limit}

The current is higher than the value in par. 4-18 Current Limit.

\section*{WARNING 60, External interlock}

External interlock has been activated. To resume normal operation, apply 24 V DC to the terminal programmed for external interlock and reset the frequency converter (via serial communication, digital I/O, or by pressing reset button on keypad).

\section*{WARNING 61, Tracking error}

An error has been detected between calculated motor speed and speed measurement from feedback device. The function for Warning/Alarm/ Disable is set in 4-30, Motor Feedback Loss Function, error setting in 4-31, Motor Feedback Speed Error, and the allowed error time in 4-32, Motor Feedback Loss Timeout. During a commissioning procedure the function may be effective.

\section*{WARNING 62, Output frequency at maximum limit}

The output frequency is higher than the value set in par. 4-19 Max Output Frequency

\section*{WARNING 64, Voltage limit}

The load and speed combination demands a motor voltage higher than the actual DC link voltage.

\section*{WARNING/ALARM/TRIP 65, Control card over temperature}

Control card over temperature: The cutout temperature of the control card is \(80^{\circ} \mathrm{C}\).

\section*{WARNING 66, Heatsink temperature low}

This warning is based on the temperature sensor in the IGBT module.

\section*{Troubleshooting:}

The heatsink temperature measured as \(0^{\circ} \mathrm{C}\) could indicate that the temperature sensor is defective causing the fan speed to increase to the maximum. If the sensor wire between the IGBT and the gate drive card is disconnected, this warning would result. Also, check the IGBT thermal sensor.
ALARM 67, Option module configuration has changed
One or more options have either been added or removed since the last power-down.

\section*{ALARM 68, Safe stop activated}

Safe stop has been activated. To resume normal operation, apply 24 V DC to terminal 37, then send a reset signal (via Bus, Digital I/O, or by pressing the reset key. See par. .

\section*{ALARM 69, Power card temperature}

The temperature sensor on the power card is either too hot or too cold.

\section*{Troubleshooting:}

Check the operation of the door fans.
Check that the filters for the door fans are not blocked.
Check that the gland plate is properly installed on IP 21 and IP 54 (NEMA 1 and NEMA 12) drives.

\section*{ALARM 70, Illegal FC Configuration}

Actual combination of control board and power board is illegal.

\section*{WARNING/ ALARM 71, PTC 1 safe stop}

Safe Stop has been activated from the MCB 112 PTC Thermistor Card (motor too warm). Normal operation can be resumed when the MCB 112 applies 24 V DC to T-37 again (when the motor temperature reaches an acceptable level) and when the Digital Input from the MCB 112 is deactivated. When that happens, a reset signal must be is be sent (via serial communication, digital I/O, or by pressing reset button on keypad). Note that if automatic restart is enabled, the motor may start when the fault is cleared.

\section*{ALARM 72, Dangerous failure}

Safe stop with trip lock. Unexpected signal levels on safe stop and digital input from the MCB 112 PTC thermistor card.

\section*{Warning 76, Power Unit Setup}

The required number of power units does not match the detected number of active power units.

\section*{Troubleshooting:}

When replacing an F-frame module, this will occur if the power specific data in the module power card does not match the rest of the drive. Please confirm the spare part and its power card are the correct part number.

\section*{WARNING 73, Safe stop auto restart}

Safe stopped. Note that with automatic restart enabled, the motor may start when the fault is cleared.

\section*{WARNING 77, Reduced power mode:}

This warning indicates that the drive is operating in reduced power mode (i.e. less than the allowed number of inverter sections). This warning will be generated on power cycle when the drive is set to run with fewer inverters and will remain on.

\section*{ALARM 79, Illegal power section configuration}

The scaling card is the incorrect t number or not installed. Also MK102 connector on the power card could not be installed.

\section*{ALARM 80, Drive initialized to default value}

Parameter settings are initialized to default settings after a manual reset.

\section*{ALARM 91, Analog input 54 wrong settings}

Switch S202 has to be set in position OFF (voltage input) when a KTY sensor is connected to analog input terminal 54.

\section*{ALARM 92, No flow}

A no-load situation has been detected in the system. See parameter group 22-2.

\section*{ALARM 93, Dry pump}

A no-flow situation and high speed indicates that the pump has run dry. See parameter group 22-2.

\section*{ALARM 94, End of curve}

Feedback stays lower than the set point which may indicate leakage in the pipe system. See parameter group 22-5.

\section*{ALARM 95, Broken belt}

Torque is below the torque level set for no load, indicating a broken belt. See parameter group 22-6.

\section*{ALARM 96, Start delayed}

Motor start has been delayed due to short-cycle protection active. See parameter group 22-7.

\section*{WARNING 97, Stop delayed}

Stopping the motor has been delayed due to short cycle protection is active. See parameter group 22-7.

\section*{WARNING 98, Clock fault}

Clock Fault. Time is not set or RTC clock (if mounted) has failed. See parameter group 0-7.

\section*{WARNING 201, Fire M was Active}

Fire Mode has been active.
WARNING 202, Fire M Limits Exceeded
Fire Mode has suppressed one or more warranty voiding alarms.

\section*{WARNING 203, Missing Motor}

A multi-motor under-load situation was detected, this could be due to e.g. a missing motor.

\section*{WARNING 204, Locked Rotor}

A multi-motor overload situation was detected, this could be due to e.g. a locked rotor.

\section*{ALARM 243, Brake IGBT}

This alarm is only for F Frame drives. It is equivalent to Alarm 27. The report value in the alarm \(\log\) indicates which power module generated the alarm:

> 1 = left most inverter module.
> 2 = middle inverter module in F2 or F4 drive.
> 2 = right inverter module in F1 or F3 drive.
> 3 = right inverter module in F2 or F4 drive.
> \(5=\) rectifier module.

\section*{ALARM 244, Heatsink temperature}

This alarm is only for F Frame drives. It is equivalent to Alarm 29. The report value in the alarm log indicates which power module generated the alarm:
\[
\begin{aligned}
& 1 \text { = left most inverter module. } \\
& 2 \text { = middle inverter module in F2 or F4 drive. } \\
& 2 \text { = right inverter module in F1 or F3 drive. } \\
& 3 \text { = right inverter module in F2 or F4 drive. } \\
& 5 \text { = rectifier module. }
\end{aligned}
\]

\section*{ALARM 245, Heatsink sensor}

This alarm is only for F Frame drives. It is equivalent to Alarm 39. The report value in the alarm \(\log\) indicates which power module generated the alarm:
\[
\begin{aligned}
& 1 \text { = left most inverter module. } \\
& 2 \text { = middle inverter module in F2 or F4 drive. } \\
& 2 \text { = right inverter module in F1 or F3 drive. } \\
& 3 \text { = right inverter module in F2 or F4 drive. } \\
& 5 \text { = rectifier module. }
\end{aligned}
\]

\section*{ALARM 246, Power card supply}

This alarm is only for F Frame drives. It is equivalent to Alarm 46. The report value in the alarm \(\log\) indicates which power module generated the alarm:
\[
\begin{aligned}
& 1 \text { = left most inverter module. } \\
& 2 \text { = middle inverter module in F2 or F4 drive. } \\
& 2 \text { = right inverter module in F1 or F3 drive. }
\end{aligned}
\]
\[
\begin{aligned}
& 3=\text { right inverter module in F2 or F4 drive. } \\
& 5=\text { rectifier module. }
\end{aligned}
\]

\section*{ALARM 247, Power card temperature}

This alarm is only for F Frame drives. It is equivalent to Alarm 69. The report value in the alarm log indicates which power module generated the alarm:
\[
\begin{aligned}
& 1 \text { = left most inverter module. } \\
& 2 \text { = middle inverter module in F2 or F4 drive. } \\
& 2 \text { = right inverter module in F1 or F3 drive. } \\
& 3 \text { = right inverter module in F2 or F4 drive. } \\
& 5 \text { = rectifier module. }
\end{aligned}
\]

\section*{ALARM 248, Illegal power section configuration}

This alarm is only for F Frame drives. It is equivalent to Alarm 79. The report value in the alarm log indicates which power module generated the alarm:
\[
\begin{aligned}
& 1 \text { = left most inverter module. } \\
& 2 \text { = middle inverter module in F2 or F4 drive. } \\
& 2=\text { right inverter module in F1 or F3 drive. } \\
& 3=\text { right inverter module in F2 or F4 drive. } \\
& 5=\text { rectifier module. }
\end{aligned}
\]

\section*{ALARM 250, New spare part}

The power or switch mode power supply has been exchanged. The frequency converter type code must be restored in the EEPROM. Select the correct type code in par. 14-23 Typecode Setting according to the label on the unit. Remember to select 'Save to EEPROM' to complete.

ALARM 251, New type code
The frequency converter has a new type code.

\section*{Index}

\section*{0}
\(0-10 \mathrm{Vdc}\)
\(0-20 \mathrm{Ma}\)

\section*{2}

24 V Back-up Option Mcb 107 (option D) 56
24 Vdc Power Supply 60

\section*{3}

3 Setpoint Pid Controller 27
30 Ampere, Fuse-protected Terminals 60

\section*{4}

4-20 Ma 57

\section*{A}
Abbreviations ..... 5
Accessory Bags ..... 84
Acoustic Noise ..... 174
Aggressive Environments ..... 14
Air Humidity ..... 14
Alarm Word ..... 185
Alarm/warning Code List ..... 182
Alarms And Warnings ..... 181
Aluminium Conductors20
Ama
57
Analog I/o Option Mcb 109
57
Analog I/o Selection7
Analog Inputs ..... 170
Analog Inputs ..... 7
Analog Output
53
Analog Outputs - Terminal X30/5+8 ..... 53
Analog Voltage Inputs - Terminal X30/10-125
Application Examples
179
Automatic Adaptations To Ensure Performance
120
Automatic Motor Adaptation (ama) ..... 105
Awg ..... 155

\section*{B}
Bacnet ..... 70
Balancing Contractor ..... 30
Basic Wiring Example ..... 102
Battery Back-up Of Clock Function ..... 57
Better Control ..... 23
Brake Control ..... 189
Brake Function8,47
Brake Power45
Brake Resistor Cabling ..... 47
Brake Resistor Calculation ..... 45
Brake Resistor Temperature Switch ..... 108
Brake Resistors ..... 61, 77
Brake Resistors ..... 61
Branch Circuit Protection ..... 96
Break-away Torque
57
Building Management System
21
Building Management System, Bms28

\section*{c}
Cable Clamp ..... 117
Cable Clamps ..... 114
Cable Length And Cross-section ..... 90
Cable Lengths And Cross Sections ..... 169
Caution ..... 12
Cav System ..... 27
Ce Conformity And Labelling ..... 13
Central Vav Systems ..... 26
Clockwise Rotation ..... 110
Closed Loop Control For A Ventilation System ..... 37
Co2 Sensor ..... 27
Coasting ..... 152
Coasting ..... 6,151
Communication Option ..... 190
Comparison Of Energy Savings ..... 21
Condenser Pumps ..... 29
Conducted Emission ..... 41
Constant Air Volume ..... 27
Constant Torque Applications (ct Mode) ..... 180
Control Cable Terminals ..... 101
Control Cables ..... 89, 114
Control Cables ..... 90, 103
Control Cables ..... 103
Control Card Performance ..... 172
Control Card, 10 V Dc Output ..... 171
Control Card, 24 V Dc Output ..... 171
Control Card, Rs-485 Serial Communication: ..... 170
Control Card, Usb Serial Communication: ..... 172
Control Characteristics ..... 171
Control Potential ..... 31
Control Structure Closed Loop ..... 33
Control Structure Open Loop ..... 32
Control Terminals ..... 101
Control Word ..... 150
Cooling ..... 180
Cooling Conditions ..... 85
Cooling Tower Fan ..... 28
Copyright, Limitation Of Liability And Revision Rights ..... 3
\(\operatorname{Cos} \Phi\) Compensation ..... 23

\section*{D}
Dampers ..... 26
Data Types Supported By The Frequency Converter ..... 136
Dc Brake ..... 150
Dc Link ..... 188
Definitions ..... 5
Derating For Ambient Temperature ..... 179
Derating For Low Air Pressure ..... 179
Derating For Running At Low Speed ..... 180
Devicenet ..... 70
Differential Pressure ..... 31
Digital Inputs - Terminal X30/1-4 ..... 53
Digital Inputs: ..... 169
Digital Output ..... 171
Digital Outputs - Terminal X30/5-7 ..... 53
Direction Of Motor Rotation ..... 110
Disposal Instruction ..... 12
Drive Configurator ..... 65
Du/dt Filters ..... 64

\section*{E}
Earth Leakage Current ..... 113
Earth Leakage Current ..... 44
Earthing ..... 117
Earthing Of Screened/armoured Control Cables ..... 117
Efficiency ..... 173
Electrical Installation ..... 89
Electrical Installation ..... 90, 103
Electrical Installation - Emc Precautions ..... 114
Electrical Terminals ..... 15
Emc Directive 89/336/eec ..... 14
Emc Precautions ..... 130
Emc Test Results ..... 41
Emission Requirements ..... 40
Enclosure Knock-outs ..... 91
Energy Savings ..... 22
Energy Savings ..... 20
Equalising Cable, ..... 117
Etr ..... 109
Evaporator Flow Rate ..... 30
Example Of Closed Loop Pid Control ..... 37
Extended Status Word ..... 187
Extended Status Word 2 ..... 187
External 24 V Dc Supply ..... 56
External Fan Supply ..... 108
External Temperature Monitoring ..... 60
Extreme Running Conditions ..... 47

\section*{F}
Fan System Controlled By Frequency Converters ..... 25
Fault Messages ..... 188
Fc Profile ..... 150
Fc With Modbus Rtu ..... 131
Field Mounting ..... 87
Final Set-up And Test ..... 105
Flow Meter ..... 30
rame Size F Panel Options ..... 1
Freeze Output ..... 6
requency Converter Hardware Setup ..... 130
Frequency Converter Set-up ..... 131
Frequency Converter With Modbus Rtu ..... 138
Function Codes Supported By Modbus Rtu ..... 142
Fuse Tables ..... 99
Fuses ..... 96

\section*{G}
General Aspects Of Emc Emissions ..... 39
General Aspects Of Harmonics Emission ..... 41
General Specifications ..... 169
General Warning ..... 4
Gland/conduit Entry - Ip21 (nema 1) And Ip54 (nema12) ..... 93

\section*{H}
Harmonic Filters ..... 71
Harmonics Emission Requirements ..... 42
Harmonics Test Results (emission) ..... 42
High Power Series Mains And Motor Connections ..... 88
High Voltage Test ..... 113
Hold Output Frequency ..... 151
How To Connect A Pc To The Frequency Converter ..... 111
How To Control The Frequency Converter ..... 142

\section*{I}
I/os For Set Point Inputs ..... 57
Iec Emergency Stop With Pilz Safety Relay ..... 59
Igvs ..... 26
Immunity Requirements ..... 42
Index (ind) ..... 135
Installation At High Altitudes ..... 12
Insulation Resistance Monitor (irm)
Intermediate Circuit
Ip 21 /ip \(4 x /\) Type 1 Enclosure Kit
Ip 21/type 1 Enclosure Kit

\section*{M}

Mains Disconnectors 107
Mains Drop-out
Mains Supply9
Mains Supply ..... 155, 159
Mains Supply \(3 \times 525-690\) Vac ..... 163
Manual Motor Starters ..... 59
Manual Pid Adjustment ..... 39
Mcb 105 Option ..... 54
Mct 10 Set-up Software ..... 112
Mct 31 ..... 113
Mechanical Dimensions ..... 81, 83
Mechanical Dimensions - High Power ..... 82
Mechanical Mounting ..... 85
Modbus Communication ..... 130
Modbus Exception Codes ..... 142
Moment Of Inertia ..... 47
Motor Bearing Currents ..... 110
Motor Cables ..... 114
Motor Cables ..... 90
Motor Name Plate ..... 105
Motor Name Plate Data ..... 105
Motor Output ..... 169
Motor Parameters ..... 120
Motor Phases ..... 47
Motor Protection ..... 109, 173
Motor Rotation ..... 110
Motor Thermal Protection ..... 153
Motor Thermal Protection ..... 48, 110
Motor Voltage ..... 174
Motor-generated Over-voltage ..... 47
Multiple Pumps ..... 31
Multi-zone Control ..... 57

\section*{N}
Name Plate Data ..... 105
Namur ..... 59
Network Connection ..... 129
Ni1000 Temperature Sensor ..... 57
Non-ul Fuses 200 V To 480 V ..... 97
0
Options And Accessories ..... 51
Ordering Numbers ..... 65
Ordering Numbers: Du/dt Filters, 380-480 Vac ..... 76
Ordering Numbers: Du/dt Filters, 525-600/690 Vac ..... 77
Ordering Numbers: Harmonic Filters ..... 71
Ordering Numbers: High Power Option Kits ..... 71
Ordering Numbers: Options And Accessories ..... 69
Ordering Numbers: Sine Wave Filter Modules, 200-500 Vac ..... 74
Ordering Numbers: Sine-wave Filter Modules, 525-600/690 Vac ..... 75
Output Filters ..... 64
utput Performance (u, V, W) ..... 169
Outputs For Actuators ..... 57
Over-current Protection ..... 96

\section*{P}
Parallel Connection Of Motors ..... 109
Parameter Number (pnu) ..... 135
Parameter Values ..... 143
Pay Back Period ..... 22
Pc Software Tools ..... 112
Pc-based Configuration Tool Mct 10 ..... 112
Peak Voltage On Motor ..... 174
Pelv - Protective Extra Low Voltage ..... 43
Plc ..... 117
Potentiometer Reference ..... 120
Power Factor ..... 9
Power Factor Correction ..... 23
Primary Pumps ..... 30
Principle Diagram ..... 57
Profibus ..... 70
Profibus Dp-v1 ..... 112
Programmable Minimum Frequency Setting ..... 28
Programming Order ..... 38
Protection ..... 14, 43, 44
Protection And Features ..... 173
Protocol Overview ..... 131
Pt1000 Temperature Sensor ..... 57
Public Supply Network ..... 42
Pulse Inputs ..... 170
Pulse Start/stop ..... 119
Pump Impeller ..... 29

\section*{R}
Radiated Emission ..... 41
Rated Motor Speed ..... 6
Rcd ..... 9,44
Rcd (residual Current Device) ..... 59
Read Holding Registers (03 Hex) ..... 147
Real-time Clock (rtc) ..... 58
Reference Handling ..... 36
Relay Option Mcb 105 ..... 54
Relay Output ..... 109
Relay Outputs ..... 171
Removal Of Knockouts For Extra Cables ..... 93
Residual Current Device ..... 44, 117
Return Fan ..... 26
Rise Time ..... 174
Rs 485 Bus Connection ..... 111
Rs-485 ..... 129

\section*{S}
Safe Stop ..... 15
Safe Stop Installation ..... 18
Safety Category 3 (en 954-1)
Safety Earth Connection
Safety Note
Safety Regulations
Safety Requirements Of Mechanical Installation
Save Drive Settings
Screened/armoured
Screened/armoured.
Screening Of Cables
Secondary Pumps
Serial Communication
Serial Communication Port

\section*{T}

Telegram Length (Ige) 132
The Clear Advantage - Energy Savings 19
The Emc Directive (89/336/eec)
The Low-voltage Directive (73/23/eec) 13
The Machinery Directive ( \(98 / 37 /\) eec \() ~ 13\)
Thermistor 9
Throttling Valve 29
Tightening Of Terminals 88
Torque Characteristics 169

Troubleshooting 181
Tuning The Drive Closed Loop Controller 39
Type Code String High Power 67
Type Code String Low And Medium Power 66

\section*{U}

Ul Compliance 97
Ul Fuses, \(200-240 \mathrm{~V}\) 98
Unsuccessful Amaauto Tune 106
Usb Connection 101
Use Of Emc-correct Cables 116

\section*{v}

Variable (quadratic) Torque Applications (vt) 180
Variable Air Volume 26
Variable Control Of Flow And Pressure 23
Varying Flow Over 1 Year 22
Vav 26
Vibration And Shock
Vibrations 28

W
Warning Against Unintended Start ..... 12
Warning Word ..... 186
Warning Word 2 ..... 186
What Is Ce Conformity And Labelling? ..... 13
What Is Covered ..... 13```


[^0]:    Motor:
    $\underline{f_{J o g}}$
    The motor frequency when the jog function is activated (via digital terminals).
    $\underline{f}$
    The motor frequency.
    $f_{\text {MAX }}$
    The maximum motor frequency.
    fmin
    The minimum motor frequency.
    $\underline{f_{M, N}}$
    The rated motor frequency (nameplate data).

    IM
    The motor current.
    $\mathrm{I}_{\mathrm{M}, \mathrm{N}}$
    The rated motor current (nameplate data).
    $\underline{n_{M, N}}$
    The rated motor speed (nameplate data).
    $\xrightarrow[\mathrm{P}_{\mathrm{M}, \mathrm{N}}]{ }$
    The rated motor power (nameplate data).
    $\underline{T_{M, N}}$
    The rated torque (motor).
    $\underline{U_{M}}$
    The instantaneous motor voltage.
    $\underline{U_{M, N}}$
    The rated motor voltage (nameplate data).

    Break-away torque

[^1]:    Equipment containing electrical components may not be disposed of together with domestic waste.
    It must be separately collected with electrical and electronic waste according to local and currently valid legislation.

