The ivs drive is a low harmonic drive via built-in dc line reactors. This does not guaranty performance to any system wide harmonic specification or the costs to meet a system wide specification. If supplied with the system electrical details, Armstrong will run a computer simulation of the system wide harmonics. If system harmonic levels are exceeded Armstrong can also recommend additional harmonic mitigation and the costs for such mitigation.

Protocol (standard):
- BACnet™ MS/TP
- BACnet™ TCP/IP
- Modbus RTU

Enclosure:
- Indoor – UL Type 12
- Outdoor – UL Type 4X with Weather Shield
- Outdoor – UL Type 4X less Weather Shield

Fused disconnect switch:
- EMI/RFI control: Integrated filter designed to meet EN61800-3

Harmonic suppression:
- Dual dc-link reactors
- (Equivalent: 5% AC line reactor)
- Supporting IEEE 519-1992 requirements**

Cooling: Fan-cooled through back channel

Ambient temperature:
- -10°C to +45°C up to 1000 meters above sea level (+14°F to +113°F, 3300 ft)

Analog I/O:
- Two current or voltage inputs, one speed output

Digital I/O:
- Two inputs, two outputs

Pulse inputs:
- Two programmable

Relay outputs:
- Two programmable

Communication port:
- RS485

OSHPD Seismic Certification OSP-0422-10
UL STD 778 & CSA STD C22.2 NO.108 certified

Test report is supplied with each pump

PUMP DESIGN DATA

- No. of pumps:
- Tag:
- Total system design flow: USgpm
- Head: ft(m) Capacity split %
- Flow per pump head: USgpm
- Parallel flow: USgpm
- Liquid: Viscosity:
- Temperature: °F (°C) Specific gravity:
- Suction: 6” (150mm) Discharge: 6” (150mm)

MOTOR DESIGN DATA

- HP:
- RPM:
- Frame size:
- Enclosure:
- Volts:
- Hertz: 60 Hz
- Phase: 3
- Efficiency: NEMA premium 12.12

MAXIMUM PUMP OPERATING CONDITIONS

ANSI 125 - (CONSTRUCTION: BF)

- 175 psig at 150°F (12 bar at 65°C)
- 140 psig at 250°F (10 bar at 121°C)

MECHANICAL SEAL DESIGN DATA

See file no. 43.50 for standard mechanical seal details as indicated below

Armstrong seal reference number

- □ c1 (a) □ Others:

FLOWS MEASUREMENT ACCURACY

The Design Envelope model selected will provide flow reading on the controls local keypad & digitally for the BMS. The model readout will be factory tested to ensure ±5% accuracy.

OPTIONS

SENSORLESS BUNDLE (STANDARD)
Operation of pump without a remote sensor. Includes:
• Sensorless control
• Flow readout
• Constant flow
• Constant pressure
Minimum system pressure to be maintained

__ft (m)___
*If minimum maintained system pressure is not known: Default to 40% of design head

PARALLEL SENSORLESS (STANDARD)
Operation of multiple pumps without a remote sensor
Minimum system pressure to be maintained

__ft (m)___
*If minimum maintained system pressure is not known: Default to 40% of design head

ENERGY PERFORMANCE BUNDLE
Provides energy savings on oversized systems by adjusting pump parameters to on-site conditions. Includes:
• Auto-flow balancing – Automatically determines control curve between design flow at on-site system head, and minimum (zero-head) flow for energy savings
• Maximum flow control – Limits flow rate to pre-set maximum for potential energy savings
Maximum flow rate

___gpm (L/s)___
*Only available if sensorless bundle is enabled

ZONE OPTIMIZATION BUNDLE
Controls pumps to ensure multiple zones are satisfied for heating or cooling
• 2 sensor control – Controls pumps in a 2-zone application to ensure both zones are always satisfied for heating or cooling

DUAL SEASON SETUP
Pre-sets heating and cooling parameters for pumps in 2-pipe systems
Cooling
Duty point

___gpm (L/s)___ at ___ft (m)___
Minimum system pressure to be maintained

___ft (m)___
Heating
Duty point

___gpm (L/s)___ at ___ft (m)___
Minimum system pressure to be maintained

___ft (m)___

OPTIONAL SERVICES
ON-SITE PUMP COMMISSIONING
Where purchased and applicable, onsite commissioning by an Armstrong representative will include setting up communication with the Pump (not wiring to BAS), adjusting parameters to match on-site conditions, register the pumps for enhanced warranty and connect the pumps to the router as part of the activation of Pump Manager.

PUMP MANAGER
As a Performance Management Service, Pump Manager is an online automated fault detection and diagnostic service for sustained performance and enhanced reliability. It includes advanced trending, alerts of variance in performance and automated reports.

Available in yearly increments. Includes an option for a price discount on the Extended Warranty Service.

*The Service requires an active internet connection.
Performance curves are for reference only.
Confirm current performance data with Armstrong ACE Online selection software.

Dimensions – inch (mm)
Weight – lbs (kg)

• Tolerance of ±0.125" (±3 mm) should be used
• For exact installation, data please write factory for certified dimensions

<table>
<thead>
<tr>
<th>INDOOR</th>
<th>OUTDOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame size:</td>
<td>364</td>
</tr>
<tr>
<td>Size:</td>
<td>6x6x8</td>
</tr>
<tr>
<td>HP:</td>
<td>60</td>
</tr>
<tr>
<td>RPM:</td>
<td>1500</td>
</tr>
<tr>
<td>AB:</td>
<td>47.44(1205)</td>
</tr>
<tr>
<td>B1:</td>
<td>9.75(248)</td>
</tr>
<tr>
<td>B2:</td>
<td>9.75(248)</td>
</tr>
<tr>
<td>C1:</td>
<td>16.90(429)</td>
</tr>
<tr>
<td>C2:</td>
<td>17.63(448)</td>
</tr>
<tr>
<td>D1:</td>
<td>16.81(427)</td>
</tr>
<tr>
<td>D2:</td>
<td>16.81(427)</td>
</tr>
<tr>
<td>E:</td>
<td>16.44(418)</td>
</tr>
<tr>
<td>F:</td>
<td>23.68(601)</td>
</tr>
<tr>
<td>P:</td>
<td>19.03(483)</td>
</tr>
<tr>
<td>SD:</td>
<td>33.94(862)</td>
</tr>
<tr>
<td>T:</td>
<td>7.88(200)</td>
</tr>
<tr>
<td>XY:</td>
<td>42.76(1086)</td>
</tr>
<tr>
<td>Weight:</td>
<td>1311(594.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTDOOR (UL TYPE 4X/TEFC)</th>
<th>OUTDOOR (UL TYPE 12/ODP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame size:</td>
<td>364</td>
</tr>
<tr>
<td>Size:</td>
<td>6x6x8</td>
</tr>
<tr>
<td>HP:</td>
<td>60</td>
</tr>
<tr>
<td>RPM:</td>
<td>1500</td>
</tr>
<tr>
<td>AB:</td>
<td>47.44(1205)</td>
</tr>
<tr>
<td>B1:</td>
<td>9.75(248)</td>
</tr>
<tr>
<td>B2:</td>
<td>9.75(248)</td>
</tr>
<tr>
<td>C1:</td>
<td>16.90(429)</td>
</tr>
<tr>
<td>C2:</td>
<td>17.63(448)</td>
</tr>
<tr>
<td>D1:</td>
<td>16.81(427)</td>
</tr>
<tr>
<td>D2:</td>
<td>16.81(427)</td>
</tr>
<tr>
<td>E:</td>
<td>16.44(418)</td>
</tr>
<tr>
<td>F:</td>
<td>23.68(601)</td>
</tr>
<tr>
<td>P:</td>
<td>19.03(483)</td>
</tr>
<tr>
<td>SD:</td>
<td>33.94(862)</td>
</tr>
<tr>
<td>T:</td>
<td>7.88(200)</td>
</tr>
<tr>
<td>XY:</td>
<td>42.76(1086)</td>
</tr>
<tr>
<td>Weight:</td>
<td>1377(624.4)</td>
</tr>
</tbody>
</table>