

DESIGN ENVELOPE 4300 VIL | 1415-350.0 | SUBMITTAL

File No: 101.5163 Date: MARCH 24, 2017 Supersedes: 100.4186 Date: DECEMBER 17, 2015

Job:	_ Representative:	
	Order No:	_ Date:
Engineer:	Submitted by:	_ Date:
Contractor:	Approved by:	_ Date:

PUMP DESIGN DATA

No. of pumps:	Tag:	
Capacity:USgpm (L/s)	Head:ft (m)	
Liquid:	Viscosity:	
Temperature: °F (°C)	Specific gravity:	
Suction: 14" (350 mm)	Discharge: 14" (350 mm)	
OSHPD Seismic Certification OSP-0422-10		

UL STD 778 & CSA STD C22.2 NO.108 certified

MOTOR DESIGN DATA

HP:	RPM:	Frame size:	Enclosure:
Volts:		_Hertz: 60 Hz	Phase: 3

Efficiency: NEMA premium 12.12

MAXIMUM PUMP OPERATING CONDITIONS

ANSI 125

175 psig at 150°F (12 bar at 65°C) 100 psig at 300°F (7 bar at 150°C)

ANSI 250 375 psig at 150°F (26 bar at 65°C) 260 psig at 300°F (21 bar at 150°C)

• Tolerance of ±0.125" (±3 mm) should be used

For exact installation, data please write factory for certified dimensions

MECHANICAL SEAL DESIGN DATA

See file no. 43.50 for standard mechanical seal details as indicated below

Armstrong seal reference number

□ c1 (a) □ Others: ____

CONTROLS DATA

Orientation:	\Box L1 (default) \Box L2 \Box L3 \Box L4	
Protocol (standard):	□ BACNet [™] TCP/IP	
	□ Modbus rtu	
Enclosure:	🗆 Indoor – UL TYPE 12	
Fused disconnect switch:	N/A	
EMI/RFI control:	Integrated filter designed to meet EN61800-3	
Harmonic suppression:	Dual DC-link reactors (Equivalent: 5% AC line reactor) Supporting IEEE 519-1992 requirements**	
	Fan-cooled through back channel	
Cooling:	Fan-cooled through back channel	
-	Fan-cooled through back channel -10°C to +45°C up to 1000 meters above sea level (-14°F to +113°F, 3300 ft)	
Ambient temperature:	-10°C to +45°C up to 1000 meters above sea level (-14°F to	
Ambient temperature: Analog ı/o:	-10°C to +45°C up to 1000 meters above sea level (-14°F to +113°F, 3300 ft) Two current or voltage inputs,	
Ambient temperature: Analog ı/o: Digital ı/o:	-10°C to +45°C up to 1000 meters above sea level (-14°F to +113°F, 3300 ft) Two current or voltage inputs, one current output Six programmable inputs (two	
Ambient temperature: Analog ı/o: Digital ı/o: Pulse inputs:	-10°C to +45°C up to 1000 meters above sea level (-14°F to +113°F, 3300 ft) Two current or voltage inputs, one current output Six programmable inputs (two can be configured as outputs)	

**The IVS 102 drive is a low harmonic drive via built-in DC line reactors. This does not guaranty performance to any system wide harmonic specification or the costs to meet a system wide specification. If supplied with the system electrical details, Armstrong will run a computer simulation of the system wide harmonics. If system harmonic levels are exceeded Armstrong can also recommend additional harmonic mitigation and the costs for such mitigation. Design Envelope 4300 VIL

2

OPTIONS

SENSORLESS BUNDLE (STANDARD)

Operation of pump without a remote sensor. Includes:

- Sensorless control
- Flow readout
- Constant flow
- Constant pressure

Minimum system pressure to be maintained

ft (m)

* If minimum maintained system pressure is not known: Default to 40% of design head

PARALLEL SENSORLESS

Operation of multiple pumps without a remote sensor

Minimum system pressure to be maintained ft (m)

* If minimum maintained system pressure is not known: Default to 40% of design head

П **ENERGY PERFORMANCE BUNDLE**

Provides energy savings on oversized systems by adjusting pump parameters to on-site conditions. Includes:

- Auto-flow balancing Automatically determines control curve between design flow at on-site system head, and minimum (zerohead) flow for energy savings
- Maximum flow control Limits flow rate to pre-set maximum for potential energy savings

Maximum flow rate gpm (L/s)

*Only available if sensorless bundle is enabled

PROTECTION BUNDLE

Protects other flow sensitive equipment by setting limits of pump operation. Includes:

- · Minimum flow control Attempts to maintain flow rate to pre-set minimum to protect equipment in system
- Bypass valve control Actuates a bypass valve to protect flow sensitive equipment if pre-set minimum flow rate is reached

Minimum flow rate gpm (L/s)

*Only available if sensorless bundle is enabled

п ZONE OPTIMIZATION BUNDLE

Controls pumps to ensure multiple zones are satisfied for heating or cooling

• 2 sensor control - Controls pumps in a 2-zone application to ensure both zones are always satisfied for heating or cooling

DUAL SEASON SETUP П

Pre-sets heating and cooling parameters for pumps in 2-pipe systems

Cooling

Duty point gpm (L/s) at ft (m) Minimum system pressure to be maintained ft (m)

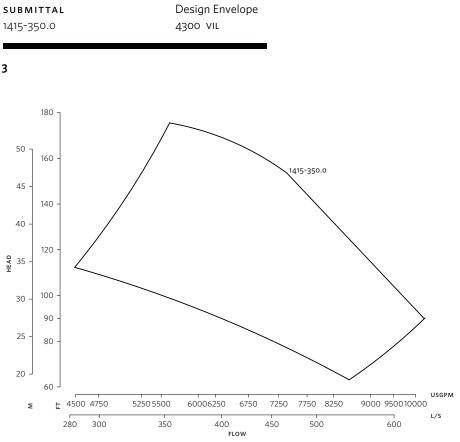
Heating

Duty point	gpm (L/s) at	ft (m)
Minimum system pressure to be maintained		
	ft (m)	

OPTIONAL SERVICES

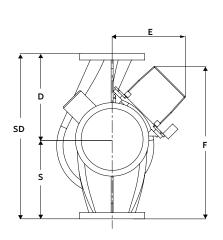
ON-SITE PUMP COMMISSIONING

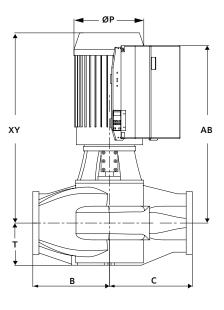
PUMP MANAGER


Online service for sustained pump performance and enhanced reliability.

Available in 3 or 5 year terms

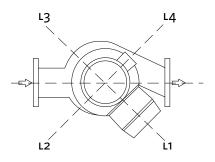
* Requires an internet connection to be provided by building * Includes an extended warranty for parts and labour (wearable parts excluded)





Performance curves are for reference only. Confirm current performance data with Armstrong ACE Online selection software.

INDOOR



DIMENSION DATA

INDOOR (UL TYPE 12/ODP)		
Size:	14×14×15	
HP:	350	
RPM:	1780	
AB:	64.87(1648)	
в:	20.50(521)	
c:	13.80(351)	
D:	27.00(686)	
E:	25.05(636)	
F:	25.05(636)	
P:	22.44(570)	
s:	25.00(635)	
SD:	52.00(1321)	
т:	13.80(351)	
XY:	64.83(1647)	
Weight:	4770(2163.6)	

Dimensions - inch (mm) Weight – Ibs (kg)

CONTROL ORIENTATIONS

3

TORONTO

23 BERTRAND AVENUE TORONTO, ONTARIO CANADA M1L 2P3 +1 416 755 2291

BUFFALO

93 EAST AVENUE NORTH TONAWANDA, NEW YORK U.S.A. 14120-6594 +1 716 693 8813

BIRMINGHAM

HEYWOOD WHARF, MUCKLOW HILL HALESOWEN, WEST MIDLANDS UNITED KINGDOM B62 8DJ +44 (0) 8444 145 145

MANCHESTER

WOLVERTON STREET MANCHESTER UNITED KINGDOM M11 2ET +44 (0) 8444 145 145

BANGALORE

#59, FIRST FLOOR, 3RD MAIN MARGOSA ROAD, MALLESWARAM BANGALORE, INDIA 560 003 +91 (0) 80 4906 3555

SHANGHAI

NO. 1619 HU HANG ROAD, XI DU TOWNSHIP FENG XIAN DISTRICT, SHANGHAI P.R.C. 201401 +86 21 3756 6696

SÃO PAULO

RUA JOSÉ SEMIÃO RODRIGUES AGOSTINHO, 1370 GALPÃO 6 EMBU DAS ARTES SAO PAULO, BRAZIL +55 11 4781 5500

ARMSTRONG FLUID TECHNOLOGY ESTABLISHED 1934

ARMSTRONGFLUIDTECHNOLOGY.COM

ENERGA SENSE SENSE